Lecture 4

Linearity Testing

Definition 1. (BLR Test!) Want to test if f : F? — F5 is close to linear. * M. Blum, M. Luby, and R. Rubinfeld.
2 Y,
Pick x, F" u.a.r. Check whether f(x — f(x ) Self-testing / correcting with appli-
¢ yEe® Chec ethe f ( + ]/) f ( ) + f (]/) cations to numerical problems. In
Proceedings of the Twenty-Second Annual

Theorem 1. For all functions f, there exists a linear function g such that ACM Symposium on Theory of Computing,

dist(f,8) := Pry[f(n) # g(n)] < 3Pr[BLR rejects f].2 STOC “go, page 73-83, New York, NY,
USA, 1990. Association for Computing
IF, Facts: Machinery
* 3 can be eliminated by a different
1. +1=-1 (mod 2) — X+y=x—yx+yt+y=x. proof technique (Fourier Analysis).

2. Fixx € Fj. y ~Fjuar. = x+y~F; uar
3. Fix v £ 0. Pry[(0,x) # 0] = .

Let g(x) := Maj,cpy (f(x +2) — f(z)). Recall that if f is linear, then
f(x) = f(x+2z) — f(z)). Intuitively, if only a few places in f are not
linear, then most majority votes for g will be heavily lopsided.

Claim 2. g is a linear function if 6 := Pr[BLR rejects f] is small (< 21—0).

Claim 3. dist(f,g) := Prn[f(n) # g(n)] < 26.

Combining Claims 2 and 3 yields proof for Theorem 1 for small é.
Let Py := Pry[g(x) = f(x +y) — f(y)], i.e. how lopsided the
majority vote for g is on the input x. Observe that Py > % since it is

always the winning majority of two candidates.

Claim 4 ("Surprising" Claim). Vx, Py > 1 — 20.

This is surprising since the BLR test, a "global" estimate of f’s
linearity, gives a tight bound on the "local" exactness of g(x).

Proof. Letevent A(y,z) := I{f(x+y) — f(y) = f(x+2) — f(z)}.
Consider Pry;[A(y, z)] for a fixed x. WLOG, assume g(x) = 0.
f(x+vy)— f(y) and f(x +z) — f(z) are each bits with bias Py. Then,
Pr[A] = PyPy + (1 _Px)(l _Px) = P)%—i_ (1_Px)2-



Now, consider a different form of event A: f(x +y) + f(x +z) =
f(y) + f(z) (by F, Fact #1, we can ignore +). By using the BLR test,
we can conclude that:

fy)+f(z) = fly+z) wp. (1-9),

flx4+y)+ f(x+z)=f(x+y+x+2z)=f(y+2z) wp. (1-9).

Then, by a naive union bound of both sides evaluating to f(y + z),
Pr[A] > 1 — 26. Substituting the previous result:

P24 (1-P)?>1-26
— 142P2-2P,>1-25
e 5> P(1—Py) > %(1—px)

= P,>1-2/

where the inequality in the third line holds due to P, > % O
Now, we are equipped to prove Claims 2 and 3.

Proof. (Claim 2) Our goal is to prove that g(x) + ¢(y) = g(x +
y) Vx,y. To do so, we first construct a "magic square" that relates

glx) = flx+z2) - f(2)
+ + +

sly) = fly +w) - fl(w)

gix+y) = flx+y+z+w) - f(z+w)

functions f and g, as in Table . The key observation is that if all five
red equalities hold, then the blue equality must also hold.
Due to the "Surprising" Claim 4, the following three equations:

8(x) = flx+2) = f(2),
8(y) = fly+w) —f(w),
gx+y)=flx+y+z+w)— f(z+w)
are satisfied with probability at least 1 — 26. The other two equations:
fr+2)+ fly+w) = fx+y+z+w),

f(2) + f(w) = f(z +w)

are satisfied with probability at least 1 — J due to the BLR test.

By taking a naive union bound, the probability that all are satisfied
at the same time is at least 1 — 8J. This gives the boundary condition
to have a nonzero probability of satisfying g(x) + g(y) = g(x +y)

Table 1: "Magic Square"



bel-8 >0 = J < %, which is always satisfied by a small &

specified in the claim, say < 21—0. If so, we can find z, w such that all

equations are satisfied, which suffice to be witnesses to prove that

g(x) + g(y) = g(x +y).3 Since this scheme is not dependent on the 3 A probabilistic method for existence.
choice of x and y, we can generalize it Vx, y. O

Proof. (Claim 3) By the BLR test,

Proylf(x) # f(x +y) = fW)] = Praylf(x) # f(x +y) — f(y)] = 6.

Let BAD := {x | f(x) # g(x)}, the set of inputs that f and g disagree

on. Then, Pry[f(x) # f(x+y) — f(y) | x € BAD] > } since if x is in

BAD, f(x) must disagree with at least half of f(x +y) — f(y).# Thus, +else, f(x) would have agreed with the
the following inequality can be established: majority and thus agreed with g(x).

0 = Pryylf(x) # f(x +y) — f(y)]
> Proylf(x) # f(x+y) — f(y) | x € BAD] - Pry[x € BAD]

> %Prx[x € BAD]

where the first inequality is one partition of the probability space of x
and the second inequality is due to the observation above.

It is easy to see from the first and last terms that dist(f,g) =
Pry[f(x) # g(x)] = Pry[x € BAD] < 24. O

Exponential PCP with Linearity Testing

Recap: The exponential-sized PCP testing is modeled with QUADEQ,
where a solution | € IFj satisfies the system of quadratic equations:
{qi(1) =0]i=1...m}. The prover submits a proof in the form of:

¢ Hadamard encoding of | that admits a vector x,

L(x) = (I, x).

e Hadamard encoding of H :=II T that admits a matrix C,
H(C) = Zi,j Cl,]lll]

where L and H represent potentially false (nonlinear) proofs.
The process is largely split into four steps:

1. Test whether L is e-close to linear. If so, gain access to L.
2. Test whether L is e-close to linear. If so, gain access to H.
3. Test whether H and L agree.

4. Test a random sample of the constraints with H and L.



Steps 1 and 2 are done through BLR and reject with probability Q(e).
If L and H pass the BLR test, then we can safely assume that there
exists a truly linear function L and H that we can access by self-
correction with success probability > 1 — 2¢. For step 3, we test
whether H(xy ") = L(x) - L(y) for a randomly sampled x,y € F4. To
analyze this step, we introduce another piece of useful [F; fact.

Another F, Fact:

4 VM #0, Proylx" My = ¥ M;jxiy; 0] > .

Proof. M #0 = 3IM; # Gwhere M,; is a row of M. Since VM; #
0, Pry[(M;,y) # 0] = 2,My #O0wp. > 1 Then Prx[(x My) # 0] >
Prayllx, My) 0| My 20 PryMy £0] > }- 1 = 1 0

Now, we can manipulate the testing equation in step 3 in the fol-
lowing way:

H(xy") = L(x)-Lly) =x"Hy—x"1-1Ty=x"(H-1I")y = 0.

If H— 11" indeed equals 0, then this test will always succeed. How-
ever, if not, by IF, Fact #4, Pry,[x " (H — 11T )y # 0] > 1. Thus, we can
reject an inconsistent proof w.p. > 1.

Finally, for step 4, we take a random linear combination of con-
straints {g;} and expect it to equal 0. This can just be written as some
Zi,j Ai,jlilj + Y, bili+c= H(A)+ L(b) +c = 0. Ifany of g;(I) # 0,
then w.p. 3, Pri[¥; rigi(1) # 0] > 3.

Remarks on Soundness Boosting: For linearity testing, we can
actually sample x,y € IF} multlple times to increase the chance of
spotting inconsistent L and H early on. Say we sample x,  t times,
a total of 6t bits. If f is e-far from linear, Pr[success] < (1 —¢€)’. In
general, for t bits, the best possible soundness is O(%).

Soundness of PCP:
Claim 5. A PCP that reads t bits accepts a wrong proof w.p. O(%)

Rather than a proof, a sketch of the justification is as follows. Let S(¢)
be the statement that NP C PCP(t, poly(n),€). This is equivalent to
saying that there exists a CSP with constraints on t bits such that it

is NP-Hard to approximate better than a e-factor. Also, for € = %f, if
S(e) is true, then for all CSPs with constraint on t bits, there exists a
%—factor approximation algorithm.
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