
Lecture 4

Linearity Testing

Definition 1. (BLR Test1) Want to test if f : Fn
2 → F2 is close to linear. 1 M. Blum, M. Luby, and R. Rubinfeld.

Self-testing/correcting with appli-
cations to numerical problems. In
Proceedings of the Twenty-Second Annual
ACM Symposium on Theory of Computing,
STOC ’90, page 73–83, New York, NY,
USA, 1990. Association for Computing
Machinery

Pick x, y ∈ Fn
2 u.a.r. Check whether f (x + y) = f (x) + f (y).

Theorem 1. For all functions f , there exists a linear function g such that
dist(f , g) := Prn[f (n) ̸= g(n)] ≤ 9

2 Pr[BLR rejects f].2

2 9
2 can be eliminated by a different

proof technique (Fourier Analysis).

F2 Facts:

1. +1 = −1 (mod 2) =⇒ x + y = x − y, x + y + y = x.

2. Fix x ∈ Fn
2 . y ∼ Fn

2 u.a.r. =⇒ x + y ∼ Fn
2 u.a.r.

3. Fix v ̸= 0. Prx[⟨v, x⟩ ̸= 0] = 1
2 .

Let g(x) := Majz∈Fn
2
(f (x + z)− f (z)). Recall that if f is linear, then

f (x) = f (x + z)− f (z)). Intuitively, if only a few places in f are not
linear, then most majority votes for g will be heavily lopsided.

Claim 2. g is a linear function if δ := Pr[BLR rejects f] is small (≤ 1
20).

Claim 3. dist(f , g) := Prn[f (n) ̸= g(n)] ≤ 2δ.

Combining Claims 2 and 3 yields proof for Theorem 1 for small δ.
Let Px := Pry[g(x) = f (x + y) − f (y)], i.e. how lopsided the

majority vote for g is on the input x. Observe that Px ≥ 1
2 since it is

always the winning majority of two candidates.

Claim 4 ("Surprising" Claim). ∀x, Px ≥ 1 − 2δ.

This is surprising since the BLR test, a "global" estimate of f ’s
linearity, gives a tight bound on the "local" exactness of g(x).

Proof. Let event A(y, z) := 1{ f (x + y) − f (y) = f (x + z) − f (z)}.
Consider Pry,z[A(y, z)] for a fixed x. WLOG, assume g(x) = 0.
f (x + y)− f (y) and f (x + z)− f (z) are each bits with bias Px. Then,
Pr[A] = PxPx + (1 − Px)(1 − Px) = P2

x + (1 − Px)2.

2

Now, consider a different form of event A: f (x + y) + f (x + z) =

f (y) + f (z) (by F2 Fact #1, we can ignore ±). By using the BLR test,
we can conclude that:

f (y) + f (z) = f (y + z) w.p. (1 − δ),

f (x + y) + f (x + z) = f (x + y + x + z) = f (y + z) w.p. (1 − δ).

Then, by a naive union bound of both sides evaluating to f (y + z),
Pr[A] ≥ 1 − 2δ. Substituting the previous result:

P2
x + (1 − Px)

2 ≥ 1 − 2δ

=⇒ 1 + 2P2
x − 2Px ≥ 1 − 2δ

=⇒ δ ≥ Px(1 − Px) ≥
1
2
(1 − Px)

=⇒ Px ≥ 1 − 2δ

where the inequality in the third line holds due to Px ≥ 1
2 .

Now, we are equipped to prove Claims 2 and 3.

Proof. (Claim 2) Our goal is to prove that g(x) + g(y) = g(x +

y) ∀x, y. To do so, we first construct a "magic square" that relates

g(x) = f (x + z) - f (z)
+ + +

g(y) = f (y + w) - f (w)

= = =
g(x + y) = f (x + y + z + w) - f (z + w)

Table 1: "Magic Square"

functions f and g, as in Table . The key observation is that if all five
red equalities hold, then the blue equality must also hold.

Due to the "Surprising" Claim 4, the following three equations:

g(x) = f (x + z)− f (z),

g(y) = f (y + w)− f (w),

g(x + y) = f (x + y + z + w)− f (z + w)

are satisfied with probability at least 1 − 2δ. The other two equations:

f (x + z) + f (y + w) = f (x + y + z + w),

f (z) + f (w) = f (z + w)

are satisfied with probability at least 1 − δ due to the BLR test.
By taking a naive union bound, the probability that all are satisfied

at the same time is at least 1 − 8δ. This gives the boundary condition
to have a nonzero probability of satisfying g(x) + g(y) = g(x + y)

3

be 1 − 8δ > 0 =⇒ δ < 1
8 , which is always satisfied by a small δ

specified in the claim, say < 1
20 . If so, we can find z, w such that all

equations are satisfied, which suffice to be witnesses to prove that
g(x) + g(y) = g(x + y).3 Since this scheme is not dependent on the 3 A probabilistic method for existence.

choice of x and y, we can generalize it ∀x, y.

Proof. (Claim 3) By the BLR test,

Prx,y[f (x) ̸= f (x + y)− f (y)] = Prx,y[f (x) ̸= f (x + y)− f (y)] = δ.

Let BAD := {x | f (x) ̸= g(x)}, the set of inputs that f and g disagree
on. Then, Pry[f (x) ̸= f (x + y)− f (y) | x ∈ BAD] ≥ 1

2 since if x is in
BAD, f (x) must disagree with at least half of f (x + y)− f (y).4 Thus, 4 else, f (x) would have agreed with the

majority and thus agreed with g(x).the following inequality can be established:

δ = Prx,y[f (x) ̸= f (x + y)− f (y)]

≥ Prx,y[f (x) ̸= f (x + y)− f (y) | x ∈ BAD] · Prx[x ∈ BAD]

≥ 1
2

Prx[x ∈ BAD]

where the first inequality is one partition of the probability space of x
and the second inequality is due to the observation above.

It is easy to see from the first and last terms that dist(f , g) :=
Prx[f (x) ̸= g(x)] = Prx[x ∈ BAD] ≤ 2δ.

Exponential PCP with Linearity Testing

Recap: The exponential-sized PCP testing is modeled with QUADEQ,
where a solution l ∈ Fn

2 satisfies the system of quadratic equations:
{qi(l) = 0 | i = 1 . . . m}. The prover submits a proof in the form of:

• Hadamard encoding of l that admits a vector x,
L̃(x) := ⟨l, x⟩.

• Hadamard encoding of H := ll⊤ that admits a matrix C,
H̃(C) := ∑i,j Ci,jlilj.

where L̃ and H̃ represent potentially false (nonlinear) proofs.

The process is largely split into four steps:

1. Test whether L̃ is ϵ-close to linear. If so, gain access to L.

2. Test whether L̃ is ϵ-close to linear. If so, gain access to H.

3. Test whether H and L agree.

4. Test a random sample of the constraints with H and L.

4

Steps 1 and 2 are done through BLR and reject with probability Ω(ϵ).
If L̃ and H̃ pass the BLR test, then we can safely assume that there
exists a truly linear function L and H that we can access by self-
correction with success probability ≥ 1 − 2ϵ. For step 3, we test
whether H(xy⊤) = L(x) · L(y) for a randomly sampled x, y ∈ Fn

2 . To
analyze this step, we introduce another piece of useful F2 fact.

Another F2 Fact:

4. ∀M ̸= 0, Prx,y[x⊤My = ∑i,j Mi,jxiyi ̸= 0] ≥ 1
4 .

Proof. M ̸= 0 =⇒ ∃Mi ̸= 0⃗ where Mi is a row of M. Since ∀Mi ̸=
0⃗, Pry[⟨Mi, y⟩ ̸= 0] = 1

2 , My ̸= 0⃗ w.p. ≥ 1
2 . Then, Prx[⟨x, My⟩ ̸= 0] ≥

Prx,y[⟨x, My⟩ ̸= 0 | My ̸= 0⃗] · Pry[My ̸= 0⃗] ≥ 1
2 · 1

2 = 1
4 .

Now, we can manipulate the testing equation in step 3 in the fol-
lowing way:

H(xy⊤)− L(x) · L(y) = x⊤Hy − x⊤l · l⊤y = x⊤(H − ll⊤)y = 0.

If H − ll⊤ indeed equals 0, then this test will always succeed. How-
ever, if not, by F2 Fact #4, Prx,y[x⊤(H − ll⊤)y ̸= 0] ≥ 1

4 . Thus, we can
reject an inconsistent proof w.p. ≥ 1

4 .
Finally, for step 4, we take a random linear combination of con-

straints {qi} and expect it to equal 0. This can just be written as some
∑i,j Ai,jlilj + ∑i bili + c = H(A) + L(b) + c = 0. If any of qi(l) ̸= 0,
then w.p. 1

2 , Prl [∑i riqi(l) ̸= 0] ≥ 1
2 .

Remarks on Soundness Boosting: For linearity testing, we can
actually sample x, y ∈ Fn

2 multiple times to increase the chance of
spotting inconsistent L̃ and H̃ early on. Say we sample x, y t times,
a total of 6t bits. If f is ϵ-far from linear, Pr[success] ≤ (1 − ϵ)t. In
general, for t bits, the best possible soundness is O(1

2t).

Soundness of PCP:

Claim 5. A PCP that reads t bits accepts a wrong proof w.p. O(2t
2t).

Rather than a proof, a sketch of the justification is as follows. Let S(ϵ)
be the statement that NP ⊆ PCP(t, poly(n), ϵ). This is equivalent to
saying that there exists a CSP with constraints on t bits such that it
is NP-Hard to approximate better than a ϵ-factor. Also, for ϵ = 2t

2t , if
S(ϵ) is true, then for all CSPs with constraint on t bits, there exists a
2t
2t -factor approximation algorithm.

Bibliography

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting
with applications to numerical problems. In Proceedings
of the Twenty-Second Annual ACM Symposium on Theory of
Computing, STOC ’90, page 73–83, New York, NY, USA,
1990. Association for Computing Machinery.

	Lecture 4
	Linearity Testing
	Exponential PCP with Linearity Testing

	Bibliography

