UC Berkeley UF

Bit-Flipping Attack Exploration and
Countermeasure in 5G Network

Joon Kim Chengwei Duan Sandip Ray

UC Berkeley University of Florida University of Florida
EECS ECE ECE

Main Contributions

e |dentified a Man-in-the-Middle bit-flipping attack on 5G network without
integrity protection enabled ¢ . Offense!

e Proposed an alternative keystream-based shuffling protection against the
bit-flipping attack ¢ ' Defense!

e Proved that both the bit-flipping attack and the shuffling algorithm works
with real datasets < - Experiments!

Background: Why 5G Security?

e 5G is widely used for its low latency and high data rate

e 5G enables many layers of security measures, but time-sensitive
applications have to consider the cost of employing them

o ex) Cooperative Adaptive Cruise Control (CACC)

01010@00101... Compute Next
Preceding P A prec_acc Following F Acc...?

‘&) prec_vel
-,y ——)
‘ ‘ 5G Network O—O ;

Background: Encryption and Integrity in 5G

e Checksum: Bitwise addition of 2-byte words appended to the payload

@)

For detecting corruption in network channels, not equipped to detect adversaries

e NEA (Encryption): X(

from a private seed

(@)

Requires consensus

e NIA (Integrity): Appe

hash function with |

(@)

The overhead of ap

time-sensitive real-t

Segment
Control
and Data
Payload
for 2-
bytes
each

+

=

=

Control Segment 1
[J
[J
[]

Control Segment m

Data Segment 1

Data Segment n

Checksum

sion with bit strings generated

rating function

initial seed

enerated by a cryptographic
y as inputs

e performance critical to some
urned off)

Main Contributions

e Identified a Man-in-the-Middle bit-flipping attack on 5G network
without integrity protection enabled

e Proposed an alternative keystream-based shuffling protection against the
bit-flipping attack

e Proved that both the bit-flipping attack and the shuffling algorithm works
with real datasets

0101000101... Compute
Preceding P &), Precacc Following F Next Acc...?

Threat Model N == COCE)\JP

An adversary, A, acts as a Man-in-the-Middle (MITM) attacker
between a sender (S) and a receiver (R).

A can:
e Intercept the physical layer signal.
e Reconstruct the encrypted PDCP-layer bitstream.
e Flip any bits in the checksum and data payload fields.
e Re-encode and forward the modified message to R.

A cannot:

e Decrypt the NEA-encrypted ciphertext or know the secret key.

Bit-Flipping Attack

‘ Checksum ‘ ‘ Data Payload ‘

Plaintext (a = 2.0) | 01 11@1 1010 01 01 00|| 01 00(3b 00 00 00 00 00/ 00 00 00 00 00 00 00 00 |
(P Keystream 10001010 11110010 | 1111101011 111010 1000010100 111101

Ciphertext = 11 11@1 0001100110 10 11@ 1011111010 1000010100 11 1101

l -

Ciphertext | 1111(01 0001100110 10 11(dp 10 1111 10 10 | 1000 01 01 00 11 11 01
(P Keystream | 10001010 11110010 | 11111010 11 1110 10 | 1000 010100 11 1101 |

Plaintext (a = 4.0) | 01 11(1} 10 10010100/ | 01 00(1p 00 00 00 00 00 | 00 00 00 00 00 00 00 00

‘ Checksum ‘ \ Data Payload ‘

Bypasses Checksum+NEA protection without knowledge of the keystream!

Checksum Bit-Flipping

The attacker flips two bits:
1. One bit in the data payload.

Checksum

Plaintext (a = 2.0) | 01 11(0) 10 1001 01 00
P Keystream | 1000 1010 11 1100 10

Data Payload

01 00@) 00 00 00 00 00 00 00 00 00 00 00 00 00
111110101111 1010 100001 0100 11 11 01

Ciphertext | 11 11(J1 0001 1001 10

t:; @ lm

Ciphertext | 11 11(011 0001 1001 10
B Keystream | 100010 10 11 1100 10

10 11@)10 11111010 1000 010100 11 11 01

1(1)

1 11@) 1011111010 1100010100 11 11 01
1111101011 111010 100001 01 00 11 11 01

Plaintext (a = 4.0) | 01 11@1 101001 01 00

Checksum

00 OO@) 00 00 00 00 00/ 01 00 00 00 00 00 00 00

Data Payload

2. One bitin the checksum field at an aligned position. (i.e., in the same
column when divided into 2-byte words for the checksum calculation).

When does it succeed?

e The attack bypasses the checksum if the two flipped bits in the original
plaintext have even parity (i.e., they are the same: 0 and 0, or 1 and 1).

Since the checksum is nearly independent of any single payload bit, this attack

has a success rate of approximately 50%.

Checksum Data Payload

Plaintext (a =2.0) 1 011101101001 01 00 (6)00 00 00 00 00 00 00 (@00 00 00 00 00 00 00
@ Keystream ' 1000101011110010 1111101011111010 1000010100 11 1101

Payload Bit-Flippi
y pp g Ciphertext 1111110001 1001 10 ‘@11 101011111010 @0001 010011 11 01

-‘g; Jl (z)l lm

Ciphertext 11110100 01 10 01 10 @11 001011 11 10 10 00001 010011 11 01

MOtlvatlon: CheCksum blt_fllpplng EB Keystream | 100010 10 11 110010 | 11 11 10101111 1010 | 10 00 01 01 00 11 11 01

Plaintext (a=0.0) A 011111101001 01 00 @00 10 00 00 00 00 00 @00 00 00 00 00 00 00

Checksum Data Payload

can only affect one bit.

The attacker flips two aligned bits, both within the data payload.
When does it succeed?
e The attack succeeds if the two flipped bits in the original plaintext have
odd parity (i.e., they are different: 0 and 1, or 1 and 0).

The success of this attack is highly dependent on the specific data being
transmitted, unlike the checksum attack.

Main Contributions

e I|dentified a Man-in-the-Middle bit-flipping attack on 5G network without
integrity protection enabled

e Proposed an alternative keystream-based shuffling protection
against the bit-flipping attack

e Proved that both the bit-flipping attack and the shuffling algorithm works
with real datasets

Playing Defense

The Problem: The attack works because the attacker knows the position of
the bits they want to change (e.g., "the 5th bit of the acceleration value").

The Idea: What if we could shuffle the bits of the ciphertext unpredictably
o
before sending it: abcdefg — dgfcabe — dgfcabe — abcdefg

G ' flip the fifth bit!”

e If the attacker tries to flip the 5th bit, they are no longer hitting a specific,

targeted bit in the plaintext, but a random one.
e We expect that multiple bit-flipping attacks in in differing positions will

have an exponential decay in success rate. — Not too many flips!

Playing Defense

The Challenge: How can the receiver deterministically unshuffle the bits?
(Or, how do we coordinate the randomness between sender & receiver?)

COUNT

|

DIRECTION

BEARER l |

KEY —»‘

}
NEA |

PLAINTEXT
BLOCK

!

KEYSTREAM
BLOCK

}
— P —

Sender

!
LENGTH |

COUNT

|

BEARER

l

LENGTH

l

| KEY —

DIRECTION
NEA

CIPHERTEXT
BLOCK

KEYSTREAM
BLOCK

|

Receiver

PLAINTEXT

— D — Brox

The Solution: Use the private keystream already implemented in NEA!

— Use the keystream as seed for pseudorandom permutation (Fisher-Yates)

Keystream-Based Shuffling

Sender Side:

Generate the keystream K. o
Encrypt the plaintext: C=PeK.
Use the keystream K as a seed

to generate a permutation °
table T.

Shuffle the ciphertext C

according to T to get C' and °

transmit it.

Receiver Side:

Generate the exact same
keystream K and permutation
table T.

Unshuffle the received ciphertext
C’ using the inverse of T to
recover C.

Decrypt: P=CeK.

NIA vs Shuffling

NIA Shuffling
Protection Deterministic Probabilistic (fail w.p. <4%)
Overhead 32-bit MAC Zero overhead
Coverage General corruptions Prevents targeted bit flips

e Use NIA when the system cannot afford any integrity attacks and 32-bit
overhead is not significant to the system performance

e Use Shuffling when sporadic, rare attacks are acceptable but the 32-bit
overhead from appending MAC is non-negligible. (CACC!)

Main Contributions

e I|dentified a Man-in-the-Middle bit-flipping attack on 5G network without
integrity protection enabled

e Proposed an alternative keystream-based shuffling protection against the
bit-flipping attack

e Proved that both the bit-flipping attack and the shuffling algorithm
works with real datasets

Setup

Platform: OpenAirinterface (OAl), a full-software 5G network simulation.

e Attacks and defenses were implemented by modifying the
PDCP layer source code.

Scenario: Simulated vehicular communication (V2X).

e Transmitted Message: A vehicle's X-coordinate, velocity, and acceleration,
e Data Source: Real-world vehicle trajectories from the NGSIM dataset.

Result 1: Attack Feasibility

derek@ece-d4130-dere: ~/VSC_Python

$ sudo python3 testUEudp.py

Sending data (300.0, 25.0, 2.0)

s[]

[+1 derek@ece-d4130-dere: ~/VSC_Python

$ sudo docker exec -it oai-ext-dn py

Waiting for data from UE...
Received data on interface bound to IP: 0.0.0.0, Port: 1234

Received Data: (300.0, 25.0, 4.0)

s]

Checksum Data Payload

Plaintext (a = 2.0) 01 11(0) 10100101 00 01 00(gp 00 00 00 00 00|00 00 00 00 00 00 00 00 |
(P Keystream 10001010 11110010 | 111110 1011111010 | 1000010100 11 1101

Ciphertext 11 11(’1)1 0001100110 1011@3 1011111010 1000010100 11 11 01

l &

Ciphertext = 11 11@] 0001100110 10 11@) 1011111010 1000010100 11 11 01
@ Keystream ‘ 1000 10 10 11 11 00 10‘ 11111010 11 11 10 10 ‘10 0001010011 1101

Plaintext (a = 4.0) | 01 11(1) 1010010100 | 01 00(1)) 00 00 00 00 00|00 00 00 00 00 00 00 00

Checksum Data Payload

Flipping works as intended!

Resu

t 2: Shuffling

Success Rate

1.01

e
(o]

Q
o

O
>

o
N

O
o

Shuffling

w?>
—@y: y = 2’*(-0.5x$r
® Checksu

0 2 4 6 8
\'/ # of Flips

Shuffling works as intended!

“nearly” independent

~0%

Conclusion

We demonstrated that MITM bit-flipping attacks are a practical threat in
5@, even when the attacker does not know the plaintext.

Simple checksum-based attacks can achieve a ~50% success rate in mutating
data while remaining valid.

We proposed a keystream-based shuffling defense that:
e Requires no communication overhead, unlike NIA.

e Effectively mitigates attacks by reducing the success rate to ~3%.
e Prevents targeted manipulation by obfuscating bit positions.

