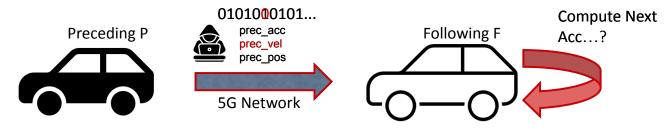
UC Berkeley

Bit-Flipping Attack Exploration and Countermeasure in 5G Network

Joon Kim

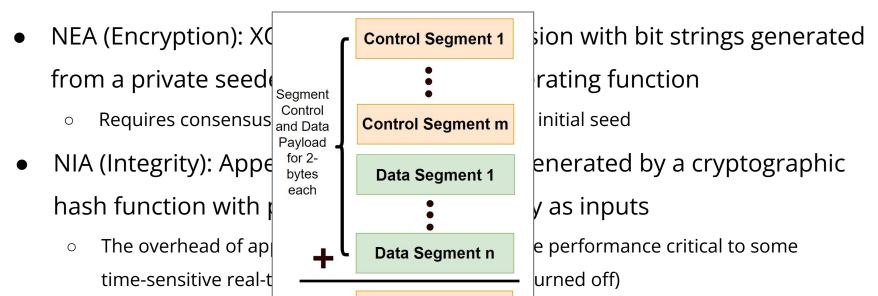
UC Berkeley EECS Chengwei Duan

University of Florida ECE


Sandip Ray

University of Florida ECE

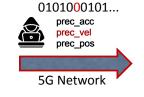
- Identified a <u>Man-in-the-Middle bit-flipping attack</u> on 5G network without integrity protection enabled **Offense!**
- Proposed an alternative <u>keystream-based shuffling protection</u> against the bit-flipping attack \(
 \) **Defense!**

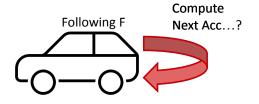

Background: Why 5G Security?

- 5G is widely used for its low latency and high data rate
- 5G enables many layers of security measures, but time-sensitive applications have to consider the cost of employing them
 - ex) Cooperative Adaptive Cruise Control (CACC)

Background: Encryption and Integrity in 5G

- Checksum: Bitwise addition of 2-byte words appended to the payload
 - For detecting corruption in network channels, not equipped to detect adversaries

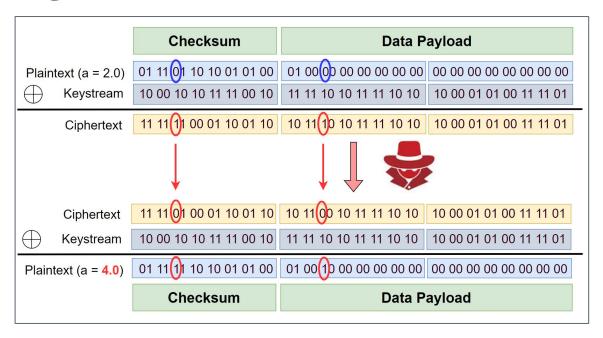



Checksum

- Identified a Man-in-the-Middle bit-flipping attack on 5G network without integrity protection enabled
- Proposed an alternative keystream-based shuffling protection against the bit-flipping attack
- Proved that both the bit-flipping attack and the shuffling algorithm works with real datasets

Threat Model

An adversary, **A**, acts as a Man-in-the-Middle (MITM) attacker between a sender (**S**) and a receiver (**R**).


A <u>can</u>:

- Intercept the physical layer signal.
- Reconstruct the encrypted PDCP-layer bitstream.
- Flip any bits in the checksum and data payload fields.
- Re-encode and forward the modified message to R.

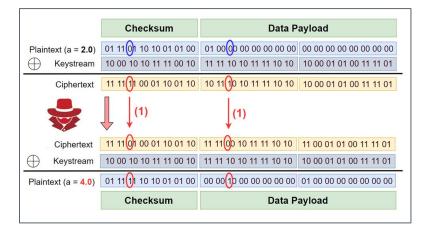
A <u>cannot</u>:

Decrypt the NEA-encrypted ciphertext or know the secret key.

Bit-Flipping Attack

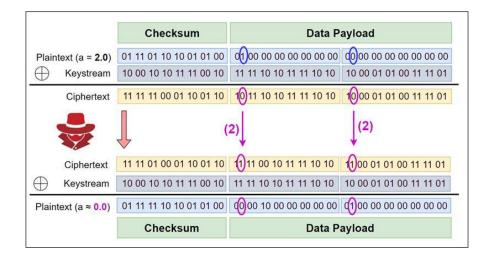
Bypasses Checksum+NEA protection without knowledge of the keystream!

Checksum Bit-Flipping


The attacker flips **two bits**:

- 1. One bit in the data payload.
- 2. One bit in the checksum field at an *aligned position*. (i.e., in the same column when divided into 2-byte words for the checksum calculation).

When does it succeed?


 The attack bypasses the checksum if the two flipped bits in the original plaintext have even parity (i.e., they are the same: 0 and 0, or 1 and 1).

Since the checksum is *nearly* independent of any single payload bit, this attack has a success rate of approximately **50%**.

Payload Bit-Flipping

Motivation: checksum bit-flipping can only affect one bit.

The attacker flips **two aligned bits**, both *within* the data payload.

When does it succeed?

 The attack succeeds if the two flipped bits in the *original plaintext* have odd parity (i.e., they are different: 0 and 1, or 1 and 0).

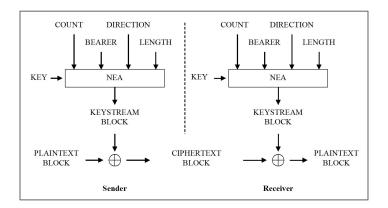
The success of this attack is highly dependent on the specific data being transmitted, unlike the checksum attack.

- Identified a Man-in-the-Middle bit-flipping attack on 5G network without integrity protection enabled
- Proposed an alternative keystream-based shuffling protection against the bit-flipping attack
- Proved that both the bit-flipping attack and the shuffling algorithm works with real datasets

Playing Defense

The Problem: The attack works because the attacker knows the position of the bits they want to change (e.g., "the 5th bit of the acceleration value").

The Idea: What if we could **shuffle** the bits of the ciphertext unpredictably before sending it? $abcdefg \rightarrow dgfcabe \rightarrow dgfcabe \rightarrow abcdefg$



"I'll flip the fifth bit!"

- If the attacker tries to flip the 5th bit, they are no longer hitting a specific, targeted bit in the plaintext, but a random one.
- We expect that multiple bit-flipping attacks in in differing positions will have an <u>exponential decay</u> in success rate. → Not too many flips!

Playing Defense

The Challenge: How can the receiver deterministically *unshuffle* the bits? (Or, how do we coordinate the randomness between sender & receiver?)

The Solution: Use the **private keystream** already implemented in NEA!

→ Use the keystream as seed for pseudorandom permutation (Fisher-Yates)

Keystream-Based Shuffling

Sender Side:

- Generate the keystream K.
- Encrypt the plaintext: C=P⊕K.
- Use the keystream K as a seed to generate a permutation table T.
- Shuffle the ciphertext C according to T to get C' and transmit it.

Receiver Side:

- Generate the exact same keystream K and permutation table T.
- Unshuffle the received ciphertext
 C' using the inverse of T to recover C.
- Decrypt: P=C⊕K.

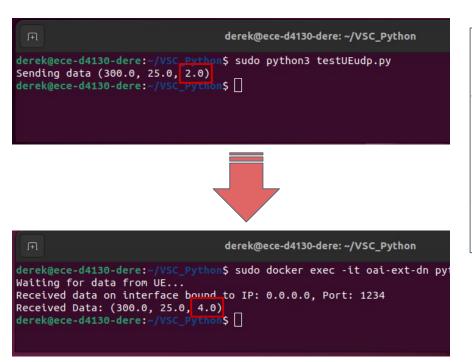
NIA vs Shuffling

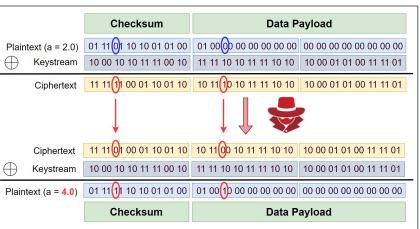
	NIA	Shuffling
Protection	Deterministic	Probabilistic (fail w.p. <4%)
Overhead	32-bit MAC	Zero overhead
Coverage	General corruptions	Prevents targeted bit flips

- Use NIA when the system cannot afford any integrity attacks and 32-bit overhead is not significant to the system performance
- Use Shuffling when sporadic, rare attacks are acceptable but the 32-bit overhead from appending MAC is non-negligible. (CACC!)

- Identified a Man-in-the-Middle bit-flipping attack on 5G network without integrity protection enabled
- Proposed an alternative keystream-based shuffling protection against the bit-flipping attack
- Proved that both the bit-flipping attack and the shuffling algorithm works with real datasets

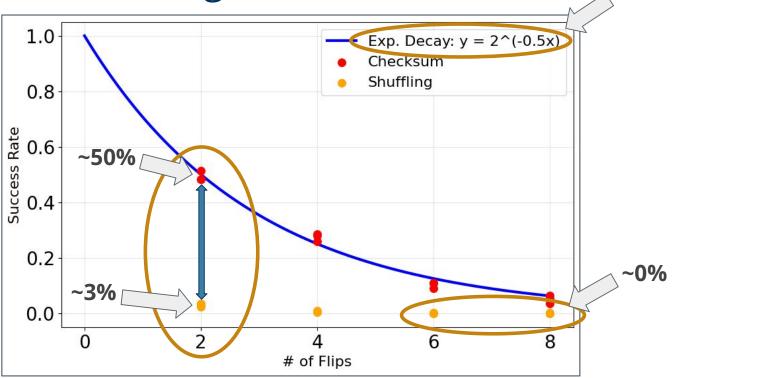
Setup


Platform: OpenAirInterface (OAI), a full-software 5G network simulation.


 Attacks and defenses were implemented by modifying the PDCP layer source code.

Scenario: Simulated vehicular communication (V2X).

- Transmitted Message: A vehicle's X-coordinate, velocity, and acceleration.
- Data Source: Real-world vehicle trajectories from the NGSIM dataset.


Result 1: Attack Feasibility

Flipping works as intended!

Result 2: Shuffling

"nearly" independent

Shuffling works as intended!

Conclusion

We demonstrated that **MITM bit-flipping attacks are a practical threat** in 5G, even when the attacker does not know the plaintext.

Simple checksum-based attacks can achieve a ~50% success rate in mutating data while remaining valid.

We proposed a **keystream-based shuffling defense** that:

- Requires no communication overhead, unlike NIA.
- Effectively mitigates attacks by reducing the success rate to ~3%.
- Prevents targeted manipulation by obfuscating bit positions.