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What Are Cohorts?

A cohort is a group of individuals who share
a common context

Different
‘ & ‘ —» features: /'
sex, PD-L1, : ._Dﬂ_

Shared condition: TIME subtype

NSCLC Measure

outcome:
MPR / RFS



Why a Cohort-Based Single-Cell Study Matters

Simple Experiment Human Cohort
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Clinical Background and Rationale
NSCLC = 85 % of lung cancer cases (LUAD vs
LUSC)

PD-1/PD-L1 blockade has transformed therapy,
but response rates = 30—40 %

PD-1 <
. _ cril Anti-PD-1%
Hypothesis: Tumor immune L __< Y
i i i ti-PD-L 1N & S
ml.croen.wronmfant (TIME) heterogeneity MHC' PDT1' '
drives differential responses e A O sl 43
000 0 0 0 ¢
MPR (major pathologic response) and RFS (Zhu et al., 2020)

(recurrence-free survival) as clinical results



Study Design and Cohort

234 patients with resectable NSCLC treated with neoadjuvant anti-PD-1 + chemotherapy

Samples collected at surgery — tumor, lymph node, and blood

1.25 million cells analyzed by scRNA-seq + scTCR-seq

Integration and NMF-based clustering(based on immune cell frequencies) to define immune

modules

A

2 ~ 4 doses of
s . anti-PD1 + chemotherapy
A8/ (N=334,245 LUSC & 89 LUAD)

>

newly diagnosed,
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Pathological response assessment
Regressed tumor bed
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Identification of 5 TIME Subtypes

A lTu mor(patient)N=222 patients (164 LUSC + 58 LUAD)
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Pathological Response Across TIME Subtypes
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TIME-NK:FGFBP2+ NK-I
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TIME-BE: B Cells and Tertiary Lymphoid Structures (TLS)

a Lymph node b TLS B cell follicle
Afferent B cell follicle Germinal
\/_ lymphatic centre

\ " Lymphatic
" vessel ﬁ
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‘ lymphocyte 3
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Lymphocytes N

Subcapsular
sinus

(Yuki et al., 2023)



TIME-BE: B Cells and Tertiary Lymphoid Structures (TLS)

Secondary lymphoid Primary lymphoid . .

organs and tissues organs Primary lymphoid organs — thymus
y y

Waldeyer's ring and bone marrow, where lymphocytes

(lymph nodes, tonsils —

and adenoids) develop.

Bronchus-associated .

lymphoid tissue Lo Secondary lymphoid organs — lymph

nodes and spleen, where immune cells
activate and interact.

Lymph nodes Bone marrow

Bone marrow

Spleen —

Tertiary lymphoid structures (TLS) —
ectopic, formed in tissues like tumors
under chronic inflammation.

Lamina propia

Peyer's patch—

Mesenteric lymph
nodes

Urogenital lymphoid tissue



TIME-BE: B Cells and Tertiary Lymphoid Structures (TLS)

C representative mature TLS in a MPR patient representative immature TLS in a non-MPR patient
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TIME-Teff vs TIME-Treg
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0]

proportion of expanded terminal Tex

TIME-Teff vs TIME-Treg

expanded CD8' T cells expression of ENTPD17 in terminal tex Tex-relevant cells

s Texp vs Tex

e Texp cells remain functional

Tex cells are terminally exhausted.

mean expression
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TCR Clonotype & Non-MPR Heterogeneity

Treg hi non-MPR

Treg low non-MPR
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Non-MPR patients split
into Treg hi and Treg low
groups.

Treg hi tumors:
expanded CCR8" Tregs,
few Texp cells.



Cox Proportional-Hazard Analysis

Univariate Cox regression analysis of 159 patients

variables adjusted P value

LUSC versus LUAD 0.89 —
pathological PP
response rate L0 H
Tex-relevant clonotypes 0.24
expanded CCR8 0.03 *

Treg clonotypes

Texp in

4.1 x 105**
Tex-relevant cells

CCR8' Treg in all Tregs 0.009 ™

Hazard Ratio

1

05 1 15 2 25 3

35

Used to identify factors that influence
recurrence risk over time

e Models time-to-event data (e.g., time
to recurrence)

e Estimates Hazard Ratio (HR) for
each variable
— HR < 1: lower recurrence risk
— HR > 1: higher recurrence risk



Recurrence-Free Survival (Cox-PH Analysis)

RFS by TIME subtypes
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More Texp — lower recurrence risk; more CCR8" Tregs — higher risk



Integrated Model and Clinical Implications

-Cytotoxic and
effector T cells

-Mature TLS
-High Texp cells

-High MPR, RFS

TIME spectrum

>
NK, MPR
Teff > Ireg
Immune- Immune-
activated suppressive

» RFS




Summary and Take-Home Messages

1 - scRNA/TCR-seq of anti-PD-1-treated NSCLC

i

N =234 NSCLC surgical resection
chemo + anti-PD-1-treated of primary tumor

3 - T cell expansion heterogeneity
in non-MPR patients

Treg'™ non-MPR MPI Treg" non-MPR

R
a V3
o \05 CB

jon of precul exhausted T cells (Texp)

expansion of CCR8" Tregs

@ Texp . terminal Tex G CCR8' Treg

recurrence-free (%)

2 - Identification of 5 TIME subtypes

PTVENKI @) NKcells ++

TIME-BE ) Beell++
TIME-Teff @ e+t

| TIME-Treg | O Treg ++
TIME-Mye \j)? Myeloid ++

4 - Precursor exhausted T cells
predict recurrence-free survival

Texp ++
Texp --

months

The power of cohort-level single-cell
analysis

The TIME exists on a functional
spectrum

Distinct immune programs drive
success or failure

Clinical implication
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Recap: sc-RNA Seq allows analyzing mechanism of disease at
much detailed resolution

Double-negative T cell

CDB‘eﬁ;clor B-cell progenitor
Single-cell RNA-Seq (scRNA-Seq) SEasy. “,; NK brickt

Isolate and sequence

) — X Pre-B cell ot
Tlssute (e.g. tumor) individual cells = CD4' naive - NK‘dim
. ,@ y e o —_ Platelet
\\\ L /4» b OQ ® » —_— -
AN 2 W £ Q% ® — . CD8' naive o848 CD16* monocytes
[ Bl L~ RSO > al.. .
s N rY ) ®e Gene 1 o TSN AR TR
CBQQ Cell 1 CD14° monocytes 1
pDC Dendritic cell
B

f, A t-SNE embedding of a primary peripheral blood mononuclear cell (PBMC) dataset with cell annotations. NK,
natural killer, separated into CD56 bright and dim subsets. pDC, plasmacytoid dendritic cell

Kharchenko, Peter V. "The triumphs and limitations of computational methods for scRNA-seq." Nature
methods 18.7 (2021): 723-732.



scVI provided a scalable framework for the probabilistic
representation and analysis of single cell

Location Location
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Done? but... sample level heterogeneity?



Smoothies Again? Within Sample

Single Cell:

individual ingredients (cells) and not the smoothie (average/bulk analysis)

PCA or even scVI:

Latent Space, and possibly cell-level classification

However, subtle differences inside the same cell classification are completely
ignored, in other words, “smoothied” again

“assumes the effects they evaluate are constant”
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Motivation of MrVI for Cohort Studies

Contribution:
(1) stratifying samples into groups (HOW)
(2) evaluating the cellular and molecular differences between groups (WHY)

Separate biological signal (target covariate) | technical noise (nuisance covariate)

without requiring a priori grouping of cells into types or states.



The Diagram (you’ll get sick of this...)

most pure

“Pure” state

Sample-unaware cell representation

without any |

covariates

,z@
;

Generative
Model

__., Variational
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| covariates that

- - -
e S Ly

Sample-aware cell
representatlon

Original Data !

N (ft. batch effects)

most noise

>@

Gene counts
(sample- and batch-aware)

)

Nuisance factors
(e.g., batch)

N

we care about!



mrVI, What Can You Do? (1/3)

(For simplicity, we assume dim(u-space) = dim(z-space))

MrVI model
U

d. Multi-batch multi-sample setup b'

: ] @
< | |1 L
= I\ -
s —> 0 0.0 @
gl IHEN ‘f
Healthy Diseased Healthy Multiplexe d Iibrary Learned effect of
. observed sample
@ o preparation on cells
p | U
0 Z
S —>00.0 @
5 IHR 5
m : (e}
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mrVI, What Can You Do? (2/3)

C. Local sample stratifications C “Multiverse!”

Observed

Sample

.--p Counterfactual
Sample

Distance

Lower Higher




mrVI, What Can You Do? (3/3)

d . Cluster-Free
Differential Abundance

U U
p(u| 3) @ Density of
""" > Diseased

‘. Density of
2 @ Healthy
' /
s p(2|u, s') _ Counterfactual
v Differential Expression
o5 Z U
« O per-gene °
ﬁ Effect of metadata per-cell (P8 oce
inzspace @ "TTTT-=--< Log-Fold Change
- Upregulated in
o O o Diseased

Di d vs. Healthy LFC f Downregulated in
iseased vs. Healthy LFC for gene g .Diseased

-

Will explain
this in detail
later...



Density

Mixture of Gaussians (very lightly)

sampling with weighted combination of Gaussians

—— Gaussian Mixture Model
== Actual Data

p=10.58, 0=0.35, w=0.53

u=9.65, 0=0.36, w=0.27

pu=11.82, 0=0.31, w=0.08

u=8.61, 0=0.52, w=0.11

6 8 10 12 14
log(Weights)

Sample-unaware cell representation

Generative
Model
Variational
Approximation

@ A Sample ID

\ Sample-aware cell
' representation

x
.
’
.
’
’
1
1
1

1
1
1
1

uisance factors

A
' @ (e.g., batch)

Gene counts

(sample- and batch-aware) N

@ B
.

Possibly account for distinct clusters for different cell types or states



The Diagram, but with a “VAE lens”

This is the
“‘encoder”’

Sample-unaware cell representation

ﬂ@.

Generative
Model
Variational
Approximation

’ 1
4 .
4 '
’ '
’ .
] .
' v o
' L
' A° Sample ID
1
1
1
\
\

Sample-aware cell
representation

\
\
\
\
\
A .
‘ @ ‘Alsance factors

(e.g., batch)
Gene counts

(sample- and batch-aware) N

Then we try to
“decode”
(or “reconstruct”)



A Piece of Philosophy

The efficacy of mrVI greatly hinges upon the existence of a u-space that
nicely captures the essence of our dataset, in addition to the z-space

If you believe in Nature...

Pascal’s Wager
Belief in God Non-Belief in God Belief in u-space Non-belief in u-space

God Infinite Gain Infinite Loss

Exists B Rsomstonal] U-space | Infinite Gain Infinite Loss
exists (Nature paper) (Somebody else

writes a Nature paper)

God

Dot | vty | ey it U-space | Finite Loss ANGEEN

o Pokmeisdt plessusee/frosdonts) doesn’t | (Experiment fails) (Do something else)
exist




A Bad Analogy (maybe not)
U-space asks: What are you? (What is this cell?)

Z-space asks: What are you? And How are you?
(How does this cell

behave?)

Which leads us to believe that the
How is encoded in (Z - U)...7?!

Sample-unaware cell representation

¥

o

Sample-aware cell
representation

4-°

!
1
1
1
1
1

\

\

Gene counts
(sample- and batch-aware)

|

" Model

Generative

, Variational
Approximation

@

Sample ID

(e.g., batch)

\
AY
\
\
A Y
N )
\ @ ‘Alsance factors

N




Kind of a “Proof”

4 )
What we care about: Arrows! O O SEIPEIES
Or in biology terms: Sample effects!! O
Or kind of a “(Z - U)” effect!!!

\_ /

Z-space
z-space (scVl) (with counterfactuals)

4 N 4 )

=0
N Y N EO]/




mrVI, What Can You Do? (2/3), again

C. Local sample stratifications C “Multiverse!”

Observed

Sample

.--p Counterfactual
Sample

Distance

Lower Higher




New Challenge, Under the Rug

4 )

=0
\_ %

What ensures that these two green arrows will be the same?

“Well... better train it good” or “No Free Lunch”

We turned one hard problem into another hard problem!



A Bit of Math Ahead...



“Fitting a straight line can

get you very far”
- Sun Tzu, probably



How do we “measure” effects of covariates?

Counterfactuals

A1 rmmm oo

L L

Covariate 1 Covariate 2

Intuition: slope is like the “sensitivity” of that covariate; little changes are significant



(high dimensions) /

T
Now in HD! 2n = Bntun, V$,

Each row of Beta n is the
“representation” of each
covariate in z-space

Digression: PCA is one way?

We simply fit Beta_n over all
counterfactual samples of z

Beta_n[i] is now the “program”
of the i-th covariate, or its
“coefficients” (actually a vector)

Intuition: weighted sum of rows of Beta.



“Computational”

“What” are you?

“‘How” are you?

“Why" are you?

“Biology”






mrVI, What Can You Do? (3/3), again

d _ Cluster-Free
Differential Abundance

4 @ y
----- ; (@ pes

Density of
Healthy

p(z|u, s") Counterfactual
v Differential Expression

o3 z U

« O per-gene

o .
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- Upregulated in
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Differential Expression!!!

We might be tempted to interpret Beta as
(Assume a single binary covariate, a switch)  djfferential expression. However, Beta cannot be
interpreted as differential expression since it still

Z'rlz — 5717, + U, lives in z(*c)-space.

Still, with the two counterfactual latent points, we
can generate plausible x vectors (gene counts)!

20 = Uy,

We can argue that we have eliminated
unwanted batch effects that vary across
subjects (because I'm comparing with myself)



mrVI, What Can You Do? (3/3), again, again

d . Cluster-Free
Differential Abundance

U U
p(u| 3) @ Density of
""" > Diseased

‘. Density of
2 @ Healthy
' /
s p(2|u, s') _ Counterfactual
v Differential Expression
o5 Z U
« O per-gene °
ﬁ Effect of metadata per-cell (P8 oce
inzspace @ "TTTT-=--< Log-Fold Change
- Upregulated in
o O o Diseased

Di d vs. Healthy LFC f Downregulated in
iseased vs. Healthy LFC for gene g .Diseased

-



Differential Abundance??? (1/3)

Remember, U-space asks: What are you? (What is this cell?)

Woah... woah... woah... Let's unpack.

“aggregated posterior distribution”
How likely is it for the cells from
u is just some cell state in u-space subject s to land onto exactly u?

0(0) 1= Yo By 00| 2

s is just some subject n are cells from that subject



Differential Abundance??? (2/3)

. 1 “aggregated posterior distribution”
qS (U) = /ns E n:s, —s q(u | an) How likely is it for the cells from

sample s to land onto exactly u?

-

ga(u) = ﬁ ZseA qs(u) A C {1,...5}

This just averages that over the set of interested subjects



Differential Abundance??? (3/3)

. 1 “aggregated posterior distribution”
qS (U) = /ns E n:s, —s q(u | an) How likely is it for the cells from

sample s to land onto exactly u?

-

ga(u) = ﬁ 2 sca ds(u) Ac{l,...S}

This just averages that over the set of interested subjects

QA (u) “log density ratio”
I'AB (u) .= log : High (+) -> very likely to be in A
JB (U) Low (-) -> very likely to be in B

(remember: log(1) = 0)



Why go through all of this fuss?

|

1- We get a “gradlent” Of Sample-unaware cell representation - aizzzative
membership property instead of @Dltchlng rpl " Aopronmaton
a sharp classification

2. We can argue on u-space, which l V@
does not involve neither :' @ Sample 1D
sample nor batch effects a priori S

3. We can analyze between % representalon
subsets of subjects, not the l

(e.g., batch)

entlre Set Of them . @Aisancetactors

Gene counts

Food for Thought: are we “ditching” z? (sampl- an batch-aware) N




Outline

1. Cohorts 3. MrVI (Boyeau et al.)
a. What are cohorts? a. scVI Recap
b. Why cohorts? b. Challenges in scVI

c. MrVI: An intuition
d. Case studies

1. Atlas Study (Liu et al.)



Other subsets b
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Fragments into subject-specific sub-clusters (colored by covariate 1)

U->27
b inter-mixed

Cell subset Covariate 1
® A c ® Cat.1 @ Cat.3 @ Cat.5 Cat.7
B Other ® Cat.2 @ Cat.4 @ Cat.6 Cat. 8

1

Sample-unaware cell representation

__, Generative
Model
-, Variational
u space Approximation
l
1 Sample ID
1
1
1
“ Sample-aware cell
representation
\
A
A
A
b l @
N\ Nuisance factors
* @ (e.g., batch)
Z space
Gene counts
(sample- and batch-aware) N




COVID Case Study (1): Grouping / Stratification

a. MrVI - U latent space
Type annotation Infection status

Infection status

B Healthy
icovip

Question: Why is this the mixing of infection status important in u-space?

Question 2: What can we say about the training if they are not mixed?



COVID Case Study (1): Grouping / Stratification

a.

MrVI - U latent space
Type annotation Infection status

MrVI: z latent space
Type annotation Infection status Type aﬂnotation I.nfectiolnhstatus
i ¥ ® Bce Healthy
R i il g™« ® CD14Mono. W COVID-19
¥ T . i ; @ CD16 Mono.
e DC
NK
o Platelet
® CD4Tcell
® CD8Tcell
® Gamma delta T cell
pDC
Other




Case Study (2): MrVI enables grouping and characterization of
small molecules in screening assays

sci-Plex: high-throughput single-cell perturbation screen

Each cell tagged with a unique “barcode” indicating which drug + dose it received

What is our ideal expectation?

U-Space Z-Space




Case Study (2): MrVI enables grouping and characterization of
small molecules in screening assays

Each cell tagged with a unique “barcode” indicating which drug + dose it received

What is our ideal expectation?

U-Space Z-Space

Baseline Cell Identity Effect of Drugs

(What are you?) (And...How are you? Behavior)




Case Study (2): MrVI enables grouping and characterization of
small molecules in screening assays

a MrVI u latent space Pathway Cell cycle
Pathway Cell cycle = ) )
@ Apoptotic regulation ® Gl
@ Cell cycle regulation ® c2™m
@® DNA damage and DNA repair ®s
@ Epigenetic regulation
@ Focal adhesion signaling Dose
HIF signaling
@ JAK-STAT signaling 10,900:nM
. Metabolic regulation @ 1,000 nM
(8 Nuclear receptor signaling ® 100nM
® Other @ 10nM
PKC signaling @ O nM (vehicle)

@ Protein folding and protein degradation
TGF-BMP signaling
Tyrosine kinase signaling

@ Vehicle

b MrVI z latent spaceI
Pathway Cell cycle

HDAC
Inhibitors

Distinct subclusters emerge,
each corresponding to specific drug classes
such as HDAC inhibitors or Trametinib (MEK inhibitor)

Trametinib




What Are Cohorts?

A cohort is a group of individuals who share
a common context

Different
‘ & ‘ —» features: /'
sex, PD-L1, : ._Dﬂ_

Shared condition: TIME subtype

NSCLC Measure

outcome:
MPR / RFS



