


Search

First Try : Reflex AgenfConly based on memory , predictionx]
scan be rational if needing quick decisions

Second Try . planning Agent (decisionbased on possible consegences)
Ls completeness(gires an answer? ) , opfimality( best answer? )
L, a

"

replanning
"

agent solves the problem on- the - fly .

Search Problemsconsistof:
- state space
- successor function ( actions & costs )

- start state & goal fest
s a solution is a sequence of actions that transforms

the start state into an end state

Worldstate us Search state (abstraction )

→ things that don
't change or don

't matter for the solution

don'tneed to bein the search state



State space Grapho mathematical representation of searchproblem
s nodes are wordstate,arrowsaresaccessors .

Search Treerencodes possible decisions as a chonological tree

Tree Search . expand on tree nodes , order matters !

s uses fringe , expan, and explorationstrate
smarnquestion:whichfringenodestoexplore?

Search Strategies :

Depth -First: expandthedeepestnodefinst .
G expands some leftprefix

,

O( bm) time for finile tree
,

onlystores siblings from path fo root→ space O(bm)
s not complete 「f infinite tree

,
not optimal and only

finds the
" leftmost" solution

Breadth- First : expand the shallowestnode first
G expands all nodes above the shallowest solufion

s time Ocbs )
,
space O ( bs )

s Complete , optimal iff all costs are L .



Iterative Deepening . Combine DFS &BFS
sRun DFS with depth limt increasing iferatirely .

s ordering is BFS- ITke , but saves memory
s the

"

lastlayer
"

out costs the previous iferations ,

soasymptotics isn't that bad .
Uniform Cost

. explore
"

cheap
"

paths first

Informed Search
Heuristic: a function that estimates how close astate is toagoal
ex) Manhatfan Distance

,
Euclidean Disfance

Greedy Search . lookatthelowestheuristic
s Similar to DFS

,
but only considers future costs .

A* Search . Combines lCSand Greedy (fcm) = g(n)thcm))
Is A* optimal ?→canfailif toopessimisficCtrapped )

Admissible heuristics : always underestimates cost togoal
s neuristic nis admissible if OShon) sh*in) where

h* is the true cost function
.



"

If Ais an optimal goal ,Bis a suboptimal goal , h is admissible ,
Awill exit the fringe before B .

"

→Proof . Imagine B is on the fringe .
Some ancestorofAis in the fringe ,

too .

Then
,
n willbeexpandedbeforeB

∞ fcn) ≤ f(A ) by admissTbilty

fCA) ≤f(B) → fcn ) ≤ fB」"

with the same argument, all ancestorsof A
are expanded before B .

,

How to design admissible heuristics?
s often relaxing constraints work (e× 1 Manhattan)
Heuristies should be informative

,
but not too cosfly to compute

* maximum of admissible heuristic is still admissible
.

Graph Searcho don' 4expandthesamestatetwice .

s however
,
if the newly computed cost is betfer than the

previously stored cost , expand Ttagain .

→ still optimal



* If a heuristic is consisten ,
the first expansion

ensures optimality for that node . ( not covered)

CSP
"

What is the best assignmenf to variables?
"

standard Search :stateis ablackbox ,goal&successorscanbeanything
CSP . Stateis defined by variablesX with valuesfromdoma

_

_

s the goal testis a set of constrofallowable assignments
ex] map coloing without adjacent states sharing colors

bVariables . regions ER ,
,
R|… ,

Rn3
.

domain . colors Ered
, green ,

blue로

constraint . (R ,# )R ⑫( implicit ) , (R ,
)② ε E(red , green) , (red , blue)

,
…3

Cexplicit)
solution : assignment satisfying all constraints

Binary CSP . all constraints take at most two variables

ex] N- Queens :variableXI ie # rows,
J
ε FIcolumns3

scolumrm

domain EO
,
(3 .constraints ?:Jik[Xi ; ,X :k ] ε (0.0) , (0 , 1) ,

( 1
,
0)}

srow

r .]
.
k (X(z ,

X ;)EE ( 0, 0), ( 1 , 0), ( O, 1 ) 3, diagonal constraints…,
also need to include , Xs = N topreventtriuTal solutlon ofallzemoes

.



ex2] Different N-Queens formulation: Variable Q
,
domain E 1 … NS

s assign a queen in each row and assign column # s .

Varieties ofCSPs :

Discrete/Continuous
,
FinitelInfinte domains

,
Unary /Binaryl

Higher Order Constraints , Soft constraints Preferences)

How to Solve CSPs . standard Search Formulation?

start with empty assignment , successor to assign a single variable

∞ BFS would be Tneffective since the solution ives in the deepest layer!

GDFS works
,
but naively checking solutlons doesn

'tcheckfor early farls

Backtracking. .Onevariableatate ,checkconstraintsonthey
~CVariable orderTng ) EfaTl- on - violation]

bstrategies . ① filtering (detecting farlures early) ② ordering( advantageous order?)

Filtering. Forwand Checking - cross offurolations when adding
a variable to an existing assig mentsexiton impossible variable
s however, it doesntfailuntiltheactual impossibleassignment.

also
, Ttonly enforces constraints on the variable just assigned .

→ contraint Propagation : reason from constraint to constrait



Arc consistency : An arc X→YTs consistent forevery ×
no

in the fall
,
there is someynme the head which could be assigned

without violating a constraint .

Ifan arcis inconsistent
,
remove an assignment fromth

taIsuchthatthearcisnowconsistent.

If atail is removed
,
checkallarcsthathadTtashead

need to be updat.
Detect early falureifa variablehasnopossible assignments
G Runtime: O (rdβ ) , can be reduced to Ocrd ).

Howerer
, detectingf future problems is NP-Hard .

Arcconsistency onlyenforcesconstraints onp → peeds backtracking
→ k=2 is ars consistency

K- consistency foranyk nodes,anyassignmentsto( k-1) of the
nodes can be " extended " to the last node

G "extended" . there exTsts a valid assignmentgiven other assignments

Strn -consistency ensures a solution to a CsP .
ballofJoin-] are consistent



OrderingHowtopickthevariable fassignment to try next?
Variable ondering : Minimum emaining Values (MRV )

stry variables with the fewest elements leftin its domain

"

fal fast
"

ordering ,
tackle the hardest subproblemsfirst

Value ordering. Least Constraining Value ( LCV )

ogiven a choice of varrable , choose the value that rules out

the fewest values in remarning variables .

s being optimistic that the easiestpathis correct

Reducing Structures: Disconnected graphs→ independent subproblems
aIf the constraint graph is a tree , CSPis solved in Ocnd2) time

e× l

A ⑬ ;- □ 튜⇒A→BPㆍ
( topologically sorted)

starting from the sink node ,
enforce arc consistency backwands checking

G there dre no multiple checks following aremsedges
withitas nead are

uncheOcnodyβ

then
, just pick variables from the source . itis ensured

fogive a solution Carc consistency ensures avalid assignmentforalledges)
bno backtrackingrequrred. Cinfact, thisis why NNs are DAGs)



If the CSPis not a tree , howabout enforcing into one?
s Identify a cufset s.t . the remaining varrables form atree
⇒ Tmprovementin runtime from exponential to (kindof) poly .
s try to cut out as Iittle as possible when forminga tree

Iterative Improvement : startwith some assignment , and improve
inconsistent variables and greedily , suchthat the

reassignment minTmizes the # of remaining inconsistencies .

Difficulty of CSP : R=
# ofconsofvarrables

→ hard when not extreme

sRisbig→ almosttrivial , Rissmall→ largesolutionspace

Local Search . nofringe ,
fastereeffecient but incompleteIsaboptimal

Adversarial earchs
"

How to choose actions in the presence of otheragents ?
"

Types of games . Zero- sum Cagents have opposite utilifies) ,
General games (independent utilities ) → cooperation? indifference?

Deterministic /Stochastic? # of players. Perfect information?
⇒ build a strattorecommendanactionbasedoncurrent state



Adversarial Games. Deterministic
,
2- player , zerosum , perfect information

- States . S ( starts at So )
- Players . P= EMAX MIN3
. Actions : A ( depends on player/state)
. Transition Function : S × A → S

- Terminal Test : S→ ETiF 로
- Terminal Utilities . S→R ( reward = score)

sL-utility)
Avof astate . = best achievable oufcome from thatstate

sfor non -terminalstates .V(S =mseeo. (s)

A state is terminal when its valueis (presumed to be) known

Minimax .whentheadversarychooses , they try fo minim뜩
bunder opponent 's control . V(S ') =MsacessoresiiV (s) MA×

def valuefma'
min

√ ) :
min and max
Λ

Ve - (TD Tare counterparts 짐"짐미W
for each successor ofV ? def Value (v ) ?

call min- value orV = mam
(V ,-value(successorlJnmatmax-value depending

return U whose turn it Is



Minimax will be optimal againsta perfectopponent . Otherwise ?
s imperfect opponent → different modeling (ExPectimax)

Efficiency= (DFS)) → fime =①( bm )
,
space = O(bm)

→ not realistic in most game scenarios

Game Tree Pruning . Can we not fraverse every single subtree?
s Intuitions once we see avalue less than the current max

value
, stop for that branch since the minimzerwil return it

or somethingevenworse( themaxTmizerneverchooses that branch )

→ pass the current rolling maximum minvalu← to min-value
.

min-valuestopsexploringwhen tsdropsbelowTF(α .

n

(max-Value versTon is symmetric) ⇒ Alpha-Beta Pruning
def valuelmatminV , a ( β ) . s no effect on minimax Value for the root

Va -LDD however
,
intermediate values have

different values
for each successor ofv ?

V = mm( V, Value(successor,α,β) )
if Va β (≤α ) returnV

음 = main( 음 (√ )



Good child ordering improves pruning efficiency !

With
"

perfect ordering
"

,
time drops to O(bma ) .

s this doubles solvable depth !

Depth - Limited Searcho Juststopand appoximate affer somedepth
ssimilar to heuristics in A* search.

ban evaluationfunguessestheufiiTty of a state
Not guaranteed optimal play anymore , but use iterative

deepening for flexrbility when computing
Eval (s) is usually a linear combination of game features
Abad evaluation function can cause an infinile loop…



Markor Decision Processes

- A set of statessES
,
AsetofactTons aEA

. Transition functionTCs, a
.

s
'

)
. = P(s'" ( s , a)

= Reward function R(s.a , s
'
)

( sometimesJustR(s )or R (s ))
. A startstate

, maybe a terminal state

"

(Markov
'

ness . action outcomes only depend on curre브 state

For an MDP
,
we wanta policy π

X

. S→A
s theoptimal policy maximizes the expected atility
ex) racecar

Fos0
.5

slow A fast-10

... G"
tast함
.

waove@

optimal policy : π* co이) =fast, π
A
(warm) = slow

,
π
*
cover) = end

MDPscan be formulated as a search tree (expectimax)

DSscurrentstates How to model rewards?
aIlb now or later?
OK , a)→ chose an actiona (q- state) b decay rewards<IX→T(s,a ,s

'

)&R(Sia ,s
') exponentlally

Ds '

bP (s' / sia) ( 1
,
γ

,
2, … 1 ∂ E (o ,

(])



Each round
,
the reward will be multiplied by discount factorγ.

sSooner rewards have higher rewards than later ones
b It alsobelps rewards convergerather than approach infinity
U (Cro'.γ o] ) =tr ←≤ Rma×/(l-γ) ( bounded)

How tosolve MDPs? → think like expectimax ,
kind of

a states are repeated in subtrees → cache them !

s do depthyimitedcomputationuntllchangesaresmall

VA(s) 8 = expected utility of starting in s Iacting optimally
Q*(s, a) 8 = expected utilTty of the q-state (s (a)& actingoptimally
π
*
(s) 8= the optimal action fromstates

Bellman Equations (simTlar to expectTmax ) nmediateewardsdiscountedapertedatikty

V *(s) = m암 Q
*
(Sia)

,
Q
*

(s .a)
=T(S ,
s )RC(S.a,s)trV*
]⇌

⇒ VA(n
=

MGT (S,9Ʃ s
)R [( S.a.sytrVA(sg]

m

→ how to solve this?

Time timitedValues . l.(s) := optimal value ofs if thegame
ends in k more steps (depth - kexpectimaxfors)
VoCsi← O

,
VG( s)← m *동T(s,a .

s)[R(s , a ,
s' )tr(gvenallov lueaus'

orepeat until convergence , which yields V
* ( O (s'A) each step)



BellmanEquation forQ
*. Q

*

(s ,
a)
= 「(s,a ,

s
')RC(S.a ,s')

t

.22ma( a. Q
*

(sia"]]
sleads to Q - value iferation algorithm for RL

But how do we getinformatTon aboutactTons (policies]로

aImaginewe havetheoptimal values U
*
(s)

.

Howshould we act?

Doa mini -expectimax :π*(s ) =argm동T(s. ais) [R(sia, s')tγV
*
(s ' )]

Cargmax returns the
"

key value
"

of the largest value in a diat )

⇒ Policy extraction ,
since tgets optimal poicies by values .

If we have optTmal Q-values , π
*
cs) = argmaaQ

*

(sia)

sextracting policies are a lot easier withquue s !

Issues with value iteration : ① slow ,
② "
max

"

rarely changes
③ policTes converge muchf teras than values

⇒ Policy - based methods can be more efficient !

Poicy EvaluatTon . what are the consequences of a polkcy 로
brather than computing maximizer nodes , just dowhat policy tells
⇒ s willtakeπ(S )andland ing-state( S,π(SDV
π
(

S)= 동,TCS , S ]
[RCS,,S '

)+JVπCSnD's$omremnniavas
cahonπcs)



Turn Vπ(s) into iferations : Vπ(s)=
O

V페 (S ) ←,T ( S ,π(s ) , s' )[R(S ,π(s) , s " ) trV포 (s)]
befficiencyTs O (S2 ) , no more factor of a when maxing
swTth out mad

,
this is Just aset of lTnear equations !

π→Vπ V o av
…

Policy Iteration . AfernatebetweenPolicyevaluation& extraction
① calculate utilities for some fTxed policy until convergence

② update policy using one-steplookaheadwth calculated utilities
⇒stilloptimal , could converge faster than Value iteration

Reinforcementlearning

Still assume MDP
, looking fora policy π(S )

sWhatif we don 't know Tor R . ( no measure ofgood
"

>

⇒ Must try outactions tolearn from them !
s black boxed initially ,

Ag@→,
R

oftonactsprobabilistially
Offline (MDP] Vs

.
Online (RL )



Passive RL Us
.

Active RL

bModel - Based RL bExPloration 」 s. Exploixation
bModel - Free RL

Model- Based Idea. Learn an approximate model , and
solve for valuesassuming it is correct
① Learn the distribulion구(sia , s) & R (s ,a ,s

'

)

② solve the model with [teration
③ Run the learned policy , repeatif unsatisfactory

Model -Free .Pon' tknowTandR , firstlearn V (s)
.

birect Evaluation : Just average all experiences afterward-
when that state was uisited ( no statedependency)
s Bellman updates don't work blc they depend onT& R .
⇒ How do we take the weighted average without knowing them?
V팝 (SI ←동.

TCs,πcs
)
,s) [RCs .

π(s)
,
s')tγV (s)]

4 take samples of outcomess
' and averagethem

V페(s) ←금동R(S ,
π(s)

,
s : ) +JV포 (si )xI

L) samples will already be weighted by frequency



TemporalDifferenceLearning .learnfromeveryexperien !

keeparunning average of V(s) until sis visited again
→ V포s) ← (ha ]V

"

(s)+α
. sample

≡ V
π

(s)←
V

π(s ) ta(sample -
V

(s))

Exponential Moving Arerage ':* n =Cl-a)× t αoxn
s recent samples are emphasized,pastestimatesare"forgottne

⇒ still onlydoes evaluation , we want new ,
befter policies

Q- Learning . sample - based Q- value iferation
→ Resiansstrm,QS,a's

Q (s
,
a) ← ( 1-α)Q(sia) +αosample

⇒ converges to optimal policy Coff -policy learning)

baslong as Q - value can converge (# of trials ,
Ir decay ,

etc)

now we choose to collect samplesdoes not matter !

Active RL : how to act to collect data?
sThelearner can choose what it wants to explore !

Simplest scheme . ε- greedy (act randomly with probability ε)
s not really deliberate in exploring other states
⇒ somehow represent

"

novelty " to promote exploration :



ExPloration Function: fcuin )= U + k서 (n . risitcounf, u .utility )
→ hignwhen N is 10 닝

Q(s
,a) tavergtepdate' RCS ,

a , is' )+rmad, 5(Q (s ' ia ') ,Ns
≈

Regret: how effectively didwe learn . Coptimally learn theoptiml)
bless regret means faster learning

Feature Reprsntation Formulas :

QS
.
a) = wof (ssal

ditf = Resiall,s )*rma
,Q
(sia'l]

- Q ( sial

wieWitadiff . f: (s ,al



Probability

Observed variables (evidence) . what the agent knows
Unobserved variables . agent needs to reason about these

Model : agent knows how to relate observed to unobserved

Random Variables . Aspect of the worldwemighthaveuncerta
seachRVhasa domain,discrete

,
boolean

,
continuous

, tuples , etc .

Probability Distribution ' .AssignseachvalueofaRU aprobabi
s PCX = 0 ) denotes the probability X takes on ralue v .
⇒ HX

,
P (X=×]2O

,옷P(X=*) = I (basic rules for PD)

Joint Distribution . Probabikty of setof RVs , P(X,X2 , … ,
×n )

Ls the size of JDgrows exponentially as variables increase

Events : Setof possibleoutcomes , P(E )=…
×MEEP
( X,…,×n)

sEactslike afiter for which JD weare interested in

Marginal Distribution :CollapsedrowsbyeliminRVs inJD
oActsasifwehavenoknowledgeoftheeliminatedRU

GP(X 1
=*) =롬 P(X=×n,X 2 =*2 )(sumupallpossible2 overxi )



Conditionls .P(alb ) =P( 금(n,( P(a )giventhatbalreadyholds )
s simple relationbetweenjointandcondprobability
⇒ PCb) can generallybefoundbymarginalzatTon overb

Conditional Distribution . PDover some variables when others are fixed

s Acts iketakinga subsetoftheJDthenrenormalizingprobabilities

Probabilistic Inference . compate a desiredprobability based on others

sgenerallycomputeconditlonals ,neweridencecauseberefstobeupdat
evidance
nm

Inference by Enumeration :.… e
.,
e,

Q
"
,

H
,de
'

HrE*
n

⇒ P(Qle,…,ek) Cobserved e, … ,
ex

,
then whatis PCa)? ]

I) Select entries consistent with evidence

2J Sumout H fogetsDof Eand Q ,
3) Normalize

sleads to runtime& space complexity O (dn ) ( Ineffecient ! )

ProductRule : PCx
,y)
= Pcy)PCxly) (dern from P(×ly)

=
s, )

↓

Chain Rule : PC×
,λ2 ,…,×n
) =PCX ×…,×

→P(×,× ,×3) = P(× X,]P(X 1 ×,)P(×31 ×% , ×.)=
PC×)PC ×*XP(×*리×D←



Bayes Rule . P(x .y)= P(×)P(y 1×)= P(y](×1y)→P(×1y
)=P×ㆍP금
←

busefulfor"flipping "probabiitieswhenfindingoneiseasierthanothe
π ↓

Pceffestlcause) PCcauseleffect)

ex) M . meningitis ,
S .stiff neck

.

P+m)=6 .
O
001

,
P(+s 1km)= 0. 8

,

Pc+s 6 - m) = 6. 0 )
.

Whatis P (tmlts]?
∞P(+mlts) =

P+s1 + m)P 금(+s ). = P

(+stm-(
Marginals )P(+ s , tm] ← P(+s , -m )

0 . 8 . 0
.
00이

=

PC+sl +m)( productrule )= 0 -
0.000t 00109a=

0.008PC+sltm) P(tm) + P(+sl-m) Pc-m)

Bayes Nefs

Independence : XiYareindependentifXYε, X,Y ),P(y)=C×P쁘
salso impliesθ X, Y

,P( ×1y
)=P (y reveals nothing about × )

⇒ Independence is a modeling assump! Emperical JDare" close" .

Condifional Independence : Independent when athird varlable isobserved
X is condind .of YgivenI iff

θXiY ,
20 .P( ×1 Y(2 ) =P( × 12 )P( y 12

)

,P( X2 . Y) =P(×2)

Pecomposition of Chain Rule : P(×, λ,×3)= P(×.)P(× 지 ×)P(×36×2×)
can be reduced to simpler structures →P(×31 ×2 ,×↓ ) = P(X31 × % )



Bayes
' Nets . describing complex JD using local onditionals

Graphical Models : nodes → variables , arcs → interactions

ex) Nindependent coin flips : Q . ⑫ -⑩
ex) Traffic :RCraining)Ti (traffic) ⑬→⑦

exl Traffic# : R ,
T

,
LClow pressure)

,
⑬y

②→⑫→⑦ C
D(roofdrips) , B (ballgame) ,( [cavity ) P

sthis is a table [CPτ )

Semanties . DAG topology tconditionalP(Xla.,n)
>

where

* isanedgeintheDAG. P (×…×n ) =,
P

(X:1 Parents(X:))

e×x )@ pccavrty) PCtcav
,
tcatch

,
-footh)

( X → P (toothachelcavity] = PC+cav) oP(tcatchltcar )

toothachee @Pccatch lcavity) oPC- toothltcav )
~

why is this true. PC×: …×,PCX:리X …)~P( X:lParents(xil)

* Notall JDcanbe represented fromBN 6 G thisis a coreassumpt
of the world modeling

exl Nindependentcoinflips .PChinit ,h )=P(xilPorents↑ = 0
.

54

ex) Traffic : ⑬×⑦ P(+r,- ← )=P ( + r10 ).PE← l+ r)=PGrJPEt+시

Reverse Causality? ⑦→⑫ still possible to reconstruct the JD !

spirection of the edges do not mean direction of causality?
*Topology reallyencodesconditionalprobabit



STze ofthe BN . Nboolean variables→ 2Nentries of JD

sNnode BN with ≤ kparents → N .2
k+'
entries of SD

⇒ TF K∠N
,
N.2< 2

µ
→ faster local CPTs I queries !

Bayes 'ets Independence
F→ S⑤ A

ex) Alarm IFirel Smoke → Alarmdoesn't care about source of smoke

BNoften giverise to additional conditional independence
ex] ④→④ →②→④.y × lY ,wyXY 12 →2 ×4y ? ? how

D -eperation : Algorithm fordetermining conditional independence fromgraphs
sstudy propertiesoffrip then composethem into complex paths
L] )CausualChains

:

④→④→② P(× 1 Y ,
2) =P(×P(yI×)P(z1y )

szyX is false
,
however 2YXlY is true ! P(다×P (z리y) ]

(notguaranteed)

2) Common Cause : ⑭→②P( Xx(y. 2)=P(y)PC×Iy)PCz리y )
bZyXis false

,
however ZyXIYistrue ! [ P(21×y ) =P(21

Enotguaranteed)

3) CommonEffect. θ,는 P(Xny ,
2) = P(X)PC )PCy2 디 ×y )

bXHY is true , however XIYIZis false?f (it is likely that
Eguaranteed)

one 「isactuallyconfributing to 2 ,
which decreases IikelThood of the other)



Active Inactive
Z

causal ④→②→④ O→O→율* ×⑫

common . 용ㅿcause ④

common 일 ④ ⒔×⑭
effect

②
Cu -structure ) Q ④
뿌
iw
㉙

General Case: entire graphisjustrepetitionofthethreecanonical cases !

s Allit takes to block a patn is asingle active segme←
ex) A -B - C -D -E → A -B- C

,
B - C-D

,
C-D-E

If there arepathXsythatisactive,not D-seperat
* XIY 1 E23 is guaranteed iff . XandyareD -separatedgiven~
shsT does not imply anything about X#* 12 when Xandy
aren

'tD-seperated ,onlythatit' sn guaranteed !



Bayes'Nets. Inference
Inference: Calculating some useful quantities from a JD
ex) Posterion : P(QIFe ,…, Ek= ex)

Most likely : argmP (Q=gI =e"… Ek = ex)
Inference by Enumeratron is slow blk itexpandsfoafullJD

Vartable Elimination can take shortcuts when marginalizing .

Factons .②P(X .Y ) → sumsto 1 ② P(x .
Y ) → sums to P(X)

③ P(Y 1×)→ sumstof ④ P(Y 1X ) → sums +이Xl

⑤P (YlX)→ sumsto…unknown! Ingeneral , P (*…YIX1 … Xm )
has a dimension equal to # of unassigned varTables

Enumeration :온동P(4 t)P(r)Pcr )γ sEliminaton:돈P(니 ←)옷Pcr)P(r)

If we have evidence
,
start with consistent entries only .

General VEprocedure : P(QIEFe ., …,Ek = ek)
WhilefHJoinall factors mentioning H : , then eliminate Hr .

FTnally ,
normalize thesp to match the original guery.

sbasicallyreorderingtolessenredundantmultiplications , worst case

exponential runtime wrot . size of the BN .



Bayes
' Nets . Sampling

Sampling is like repeated simulation .
BasicIdea: Draw Nsamples from sampling distribution S .

Compute an approximate posterior probability . Show that this

converges to the true probability Pas Ngrows .

Steps) U ← uniform ( O ,
1) (kind of given ]

Step2) Convertuinto an outcome based on subintervals in Coil)

Prior Sampling : Naively repeat sampling from starf to finish
for :=

1 . .
n

. Sample X: from P(X: lParents (Xi) )

Rejection Sampling . Only sample those thatare absolutely needed
for ;=

1 … n .SampleX
:

from P(X: lParents (Xi) )
if ×: not consistent with evidence : reject I returnearly

sRejects a LOT of samples ,
and evidence is not utilized .

LTkelihoodNeighting whatif wejust force the evidence ?

sjust doit, but keep track of the likelThood that it ACTUALLY

happens with a weight factor



w ← 1
.
O
.

for = 1 … n :

:fX: is an evidence variable :

X : e observation X, for XT

Set w ← ω× P( X: 1 Parents ( XT ))
else : basically

means" thisisequivalentto w # ofsamples ,
where wECO

, 1 )
"

Sample X. from P(X: lParents (Xi) )

oPretty good , just that it ignores evidence that comes later

Gibbs Sampling Kind of like local search , perturb one observation
IJ Fix evidence 2) InitialTze allother variables

3] Repeat . Choose a non-evidence variable X .
Resample X from P(Xlallother variables )

s P (Xlall othervariables] is very efficrent due to cancellation

with BN assumptions



Decision Network

Bayes
'

Nets
,
but with additTonal types of nodesd

- Action Node [ some domain
, agent

'
s choice )I
□

- UtilTty Node ( based on its parents ' outcomes)λ1

Goal : Maximzeexpectedutility, giventheevidence. !

Action Selection . II Instantiate all evrdence

2) Setaction in every way 3) Calculate posteriors
4) Calculate expected utility 5) Choose maximizing action

Almostlooks lTke expectimax /MDP , butwith BN distribution

*MElU ndecreasewithaddtional information
,
but it

doesn't mean that we are less happy , itjust means that

theinitial assumptions were inaccurate descriptions of reality .
MEU(E=e) = m암 동P(sle) l~. ( sameformulfiple evid)

Value of Information : compute the valuefn acquiringevidence
s Value= expected gain in MEU with newevidence

) =도P(Ee)MEU( E=e)트 ∞…VPI(E )=MEU(E ㆍMEUL



VPI Properties :

IJ Nonnegativity . fE ; e ,
VPI(Ele)2①

2) Nonadditrily : UPI (E;,Ekle)VPI(Ejle) +VPI(Ealel
3) Order - independent: VPI(,Eale) = UPI(E; le) +VPI(IEz ,

e)

=VPI(EkleJ+VPI(E;lEkie)

* If Parents (U)#21 CurrentEvidence , then VPI(21Curr .Evi) =①

POMDP . MDP
,
butstates update their probabilities over time

ssolve using truncated expectimax to appoximate utiities

Hidden Markou Models
"

WhatTf the state of the worldevolves over time?
"

Markou Model . PCx
) , PCXelXt)sameforall [stationary )

s pastefuture independentof present , only dependent on previous

PCXe) = . P(X← ,×+ )
=다

.

P(X디×←.)P(X ←
) →convergesast→ !

StationaryDistribution :P.(X )=P에(× )=옷P(X×)P~
sThis canbe solved as asystem of finear equations !

However
,
Markou models are generally notgood modeling of reality



Hidden Markou Models (HMM] : observe outputs at every time step !

bdefined by : InitTal P(X),TransitionsP (XelXn),EmissionsP(EeeTmmmmms
…→Q+→+→Q.P(xee,↓

servea
Independence Properties .1)Xe is only dependent on Xt .
2) Currentobservation is independent ofallelse given the currentstate .
* Itis not the case that evrdences are always independent !

Filfering : Tracking and updating B((X )= e(Xele…ex)overtime
bidea. start at P(X. ) and derive Be(X) usingB.(X)

Twosteps . Passage of Time & Observation ( Incomplete& Complete)
actHally irrelewant!

→Passage of TTme:Be(X=R(Xle. e)⇒Pee)=있P(xtilxt.ee)P(xele)∞
=다 PLX

대 (xt )P(×디ee) ⇒B
'

(X대) =*P(×"×eB~
→ Observation : B

'
(Xt대 ) =P(Xeileot|P(Xtilect+y) =P(Xen,eeulece)/Pinstant

irrelevant.

Xxt
,
P(X,eylec←]=P(enlet, X+. )P(Xtale .e) = P(etilAt+.)P(Xnlee )

⇒B(X)α×,P(e대X 대)B(X)~reweighting
"

bellefs afferobserving)
s needrenormalization afterderivation !



ForwardAlgorithm: P(Xelee) axtPCe다 Xe),PCXtlx더)P(×」
→ How do we deal with large state spaces?

Particle FiHering . Approximate Inference for Markou models
s Representation of P(X) is alist of N samples ( partides)

PassageofTime:× '
= sample(P(X'(×]) (generate the nextstep)

ObservatTon : ω(X)= P(elX)
,
B(X]aPcelX)BICdownweightrt.I ?kelihood )

Resample : Choose new samples based on BCXJ'sdistrTbution renormalizing )

Dynamic Bayes
' Netsto MultTple Markorf Observation nodes in BlU !

Machine Learning : Naive Bayes
"

How to acqurre a model from datalexperience
"

slabels sreward func . nolabels , just features

Types of Problems
:

Supervised, Reinforcement,Unsupervised
Classificatron: Discrete domainsSupervised Learning,Regression:Real-valued domains

ClassificafTon : Patasef (Xiy)→Featuresratkor
→

Predicty
,ML learns patterns between features and labels from data !



ex) Spam Filfer. Pataset (Email
, Espam ,

ham3 )s predrct spams !

sWhat features do we wantto lookat? words (FREE), symbols($), …

ex)DigitRecognition :Pataset (Pixelgrid , EO , …,93 ] →predictdigts !
s Features . Pixel (× (y) = Onloff , shape pafferns ( componenfs , lo0ps , …)

Model -Based Classification : Build a BN where both label and features

are RUs
.
Instantiate any observed variables , and find disfributionofy .

Naive Bayes. All featuresFlareindependenteffectsofthe label (y ) .
⇒P(Y) .Prion

.
P(FilY ) . Probabiityoffeature, giventhelabel .

Naive Bayes for bigits : One feature F,; for every pixelgrid position(i,j)
→P(Y) ( Iikeihoodofeverydigit), P(Fz! * )( onloffwhenthelabelisy )

Naive Bayes forText: Wi is the wond at position: (wiε EDictionary3 )

Moreover
,
each P(WilY ) is assumed fobe the same .⇒ identically distributed

s This assumption reduces the #ofparameters,alsogeneralizesbetter !

GtHowever
,
it will be insensitive to wordordering! ( designchoice)

→ P(Y) (spam/ ham)
,
P(wiEspam , ham3 ) ( ikeihood of word given the

type of email )



Ingeneral , thejointprobability will be P(Y,, …Fn)= PC*)&P(F: 1K ) .
s fotal # of parameters is Tnearwr.t. n 6

⇒ Computing P(YIF"…Fn) isjustinference inBN .
aInference by Enumeration .P(YIF↓…,FnlaP(4,F,…Fn)=P(×)P(F.×) .
⇒ P(y; ]포,

P(F: ly; )
,
then normalize toget P(y; | f… , fn ) .

Wealso need to estimate the CPTs → let θ denote all parametersrainable
'

!

ParameterEstimation . Empirically learn using training data P(Datal θ ]

aMaximum LikelThood. choose θ that maximzes the probabiityofd←
→ solveargma(fcol) where f(θ) is the probability of data happening
Usefal fact : argm업f(θ) = argmn ( f(θ)) [easieranalytic solution)

with d:fferentiation

∞ ForNaTveBayes ,
P(y)

=#al ,PCflYI
=# OffANofy

Empirical Risk Minimization.wewantmodelstoperformwellonunseen data

oMore training data , or regularize model complexity
ver

,
Howe training data couldmisrepresentthetruedistribution!

Ingeneral , we don' 4wanttoassign① probabilities for uncertain θ s .
s need smoothing or regularization



Laplace Smoothing : PRAPK (X ) =CCx(CCx)+ k]
=

CCX)

Nmms
s Tntutively,actas if we observed k more events of each outcome

Tuning. find the optimal smoothing value k oia held-out dataset

Perceptrons
Binary Classifier : actTuationw(X] =gn(wr. ficx)Fsgnw -fcx) )
s dotproduct signifies the correlation between weight &feature

In the feature vector space, data arepoints , and weightvectors are hypeanes.
⇒ we need to learn the weight vector from data . w

Weight Updates . y= [발합
ω아F×K0

.

update ifyis wronglyfy
*

)
,
ω aωtytfractlane

↑*I⑪
sIntuitTvely ,

weare shifting the hyperplane to reflect observed data

MulticdassDecision :tWyforeachclass , y=argma wy .fcx)
bupdate wy= wy- fcx) for wrong answer, Wy* =Wy* tfcx) for correct answer
[ ityFy* )

If the data are perfectly seperable , the perceptron will converge
bHowever,

「
tmighthaveproblemsifnot. ( thrashing, suboptimal )



Logistic Regression
Non-SeperableData :Anyinear boundary will make atleastone mistake
s interpret the line as a probabiiTstic decision ( 50:50)

Perceptron scoring : z= w . f[x) + want Pr aI if positive, →① if negative

sSigmoid : ①(2)=↓en achieves thisbehaviort.
⇒ Pr(y= I / X ,ω) =*e(wtm,Pr( y=- FlX ,

ω) = I-*ewfas
sTncreasing w will make the boundary sharper ( bestw? )

MLEof Log .Reg .
.

Loglikelihood=: logPr(y"/ ×("",ω)
⇒ a probiistic intepretation can also improve the seperable case !

Multicdass Log . Reg : θ:ε E리,…2n3 ,softmax(2:) . =몇e려
s transforming original actTirationsinto "softmax "activation
⇒ P(YIX ,W)= ewsewgotiam for perceptron interpretation

peepNeural Network. Cascading logistic regression of mltiple layers
ba bidden layer h .

"
=①(w:

(e
).e- " ) =④(동W;

e)
. h
;

e" )
' in matrix form

,
he= ① (W ×

"
)wherew"' ?

s

thematrix[-vI
ostill uses MLE

,
but now itis iterative




