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EffTciency in Economics

Preiminaries: Let X be a set .

DeflBinary on Xis a subset BEX ×X of the
Cartesian product of X with X .

ex) X . = EProf
,
GSI

, Ugrad 3. BTnary relation? s
" olderthan.

"

B = { (Prof , GSI) , (GSI , Ugrad ) , (Prof . Ugrad)3 .
* B can contain cycles !
NotatTon: (X ,Y) EB is understood as X

"

B
"

y . cordersenstTve)

We willasebinaryrelationstocapturepree

Properties of BR:
IJ BTs compor) if + X,Yε X, < X.YJ εBVCy ,×]EB

.

2) Bis tranif *X .Y .2 ε
X,(

x
.Y)EBΛ ( Y.Z)EB ⇒ (X.Z]EB

.

3) B is antisy(f ( x,Y>EBA ( X. Y)EB⇒X = Y.

Pef ) A BRthatis complete and transitive is called aweak .
A weak order thatis antisymmetric 「s calledaTnear
In economics , a weak order is called a preference relation_



Also
,

a linear order is called a strictpreter.
ex) Students

'

preferences of dorm rooms .
Distance to a certain hall is strict (no ties )

Room size if preference ( ties are possible )
Notation:PreferenceRelationsareusuallydenotedbyis .

APR xhas a utility representation :Xs IR if u
has the property xsy ⇒ U(x)2 ucy) .

ex)
"

olderthan "canberepresentedbyUCX ) = X
'

sage .

Given a PR s
,

we may define two derived BRS .
1] Thestriofs

,
denoted d

,

is xry if xdY
and itis not the case that y *X .

2) The indifference relation of 2
,
denoted N

,
is Xoy if

X* Y Λ YXX .

Observation : An indifference curve is the set of indifference relations
.

Allocation Problems
ex) stud :ents 1 ,2 ,33 . Dorms.: θ Q

,
θ

2
,θ 33 .Outside= 1

.



X . = DormsU $ 03
.

Each student : has a pR ∝ , onX .

( Assume d
,
is strict for all : ) Rankings are as follows .

Oand O are both valid assignments .OOOOHowtomensurewhich is
"

betfer
"

?

(22) 33 로 s this is relative to each student
.

⑤② However
,
consider D .

Can we argue

∅ ∅ ∅ that this is always worse than Oor ?

Def ) Allocation Problem : Taple (A , ① ,
φ
,
{ :l iEA 3) where

1! A is a non-emptyfinitesetofagents_
21 Ois anon-emptyfinTtesetofobje.
3) ⑥ represents an outside opfion ._
4] H TEA

,
∝
,
「s a strict preference over O UE$3 .

Def) Allocation . function M . A→ ① UE $ 3 s.t. ifU (i )=U (; )
when :FJ , it must be that u (τ ) = µ (; )= ⑥ ( repeatable )

Def) Pareto Dominated : U Ts PDby M
' if HTEA

,
U (" :µπ브

and J;EA
,
µ
'
(T ) ,µC



Def) Pareto Optimal: uisPOTfitisnotPpbyanyother
u

.

Def) Ordering of Agents : total order2 on A .

Algorithm) Serial PTcfatorship Allocation :
Input : An allocationproblem ( A ,O , 0 ,

Ex : l :EA3) and ordering2 ofgents
.

Initialize: A←A
,
δ ← O

.

while Ais not emty :

T← fop agent in A for 2 .

µ(τ ) ← top choice according to d, in σ UE 13 .
A A| E:3

,

δ← δㆍEuCi )3 .

Output .M .

Runtime: O( nk ) where lAl ,
k
=11

.

Theorem ] Let (A
,
①
,
φ ,
E:1 :εA3 ] be an allocation problem . Then ,

an allocation µ is PO iff it is the output of SDAJ*)
.

Proof : First
,
we prove that if u is the output of SDA with

ordering 2 . µ Ts PO ( backward implicafion ) . WLOG , suppose
that the ordering 2 is 12223 …212 n for A = InJ .



Letu
' be any assignment withu

'

(T ) ε
: µ (τ ) θ Tε [ n3 .

We w7ll

prove that no u
' is strictly betfer thanu for any agent . First ,

observe that µ ( () d:µ
'
( 1) sinceU ( 1 ) is 1

'
s fop choice in ouE03.

Then
,

since d
,
is strif

,
it must be the case thatu(1 ) = µ( 1 ) .

This sets the base case . Now , suppose that µ(: ) =µ (:) for

all : ε { !
…
,

k
-13

.

We need to prove thatu
'
(k) =U(k) .

Because µ
'

is an assignment , µ '
(k) cannotbe one of the

objects inµ ci ) for i ε! …
, k
-13 unless Tf is 9

. Thenuck)

was available to k when it was their time to choose inSDA
.

Hence
,
U(k) 는

(µ
'
(k)

,

and since 2 : is strict , µ (k]=µ
'
(K)
.

Byinduction ,
we conclude thatu ' =u and thatu is PO . ,

Now
,
we prove the forwand direction : if Uis PO , 72 on A s

.
t
.

M is the outcome of SPA with ordering2 .

Lemmal. some agent is getting their favorite optionin OUE13 .
0

: If some agent i
'
s top choice is φ , µ C:) = 0 by Po ofM .

upposes that no agent gets their top choice in U . Then , no

agent
'
s top choice is 6 . Let agent i , have l

'

s top choice inU .



Let agent is have 「 i
'
s top choice inM .

Given agentin ,

let agent ia have iais top choice . This defines a sequence
T
, 「

2
,
… .

Since Ais finTte
,
ak and Ss.t. TkF i*t… - FTkts=?.

The agents Tk… Tkts- ,arealldistinct .Now
,
define a new

assignmentU by letting µ
(
( T&=U (τπ)비 lEEk … . k

+ 8-13

and let µ
'
( : ) =UCi ) for all other agents . ThenU'c"n)

AlEEk
, … ,
k +S- 13 and U

'

(T ) *
, µ (r) forall other agents .

This is absurd
,
as µ is PO .

,

Lemma U:[ is PO ,
and AEA

,
δ= 온u (: ) | iεA

'

3
,
thenUl*

,

the restriction of u to Alt , is PO in the assignment

Problem [ AIA
,
Ol

σ , φ , E: ! TEAIA3) .
.

: Suppose towards a confradiction that Fassignmentu"

AIA→ OO] U963 s .t. M( ÷ ) KUC τ ) :EAIA and

µ
'

(τ ) *U(i] F [EAIA .

Now letMA . A → OU :03 in

( A
,
0

,
4
,
: (TEA 3]by M* (

I
)=EMCUCG, 「F : EAAA. Then,

µ
*
(τ) 는(µ (T) θ:ε A while µ

*
(i)=µ

'

()Y
, M (τ) J :EAIAEA .

Absurd
,
sinceM Ts PO

. 1,



⇒ By Lemmat, F:EA S
.
t . µ( T )istopchoiceof. Let this be

the first agent . Reasoning by inductTon ,
if we already ordered upto k- 1

;
,
> π>

…> i+
, by lemma 2 , if AF=E ""… ,

13,thenulala is PO.
In [AIA

,
이 Eu(τ) , … 'U (T페)3 ,

①
,
E*

÷ l : EA(A 3) . By Lemmaf,

FTEAlA gets a top choice in theremaining objects. LetTk

be this 1
.

Induction is complete에

Def) Social Choice Problem. tuple( A
,

X
, 는: l : εA3) in which

A Ts a finile nonempty set of agents , X is a nonempty set of outcomes,
and HTEA

,
d
,
is a preference over X .

ex) An assignmentproblem( A
,

O
,

0
, 는 : IiEA3 ) is a SCP in which

X .=Eallassignmentsu 3
,and µE

µ
' :ff M(π)(M

'

(τ) T .

Defl An outcome XEXTSPDIf JX' EN 'S.. X '

E
:
X HIEA

,

and X ' *X JiEA . An outcome is PO if π is notPD .



Fairness in Economics

The cake Cutting Problem : Model of infinitely duisible objects
s 2 agents has a famous solution→ A cuts , B picks first
⇒ intuitively , for nagents, Induct from the (r-y) case !

Def ) Cake Cuffing . tuple ( X , A ,
EU: I iEA3 ) in which :

I] X: [O
,
I3 represents the cake (infinitely divisible resource )

2) A= InJ is the set ofagents
3) HTEA

,
(U . .Ʃ→( Ris autility functTon ,

where the domain I is

the set of all finite unions of intervals (eg.[ o,' (3] 0 23,53EI )

bef) Partition (of [o.1 ] ) . acollectionofsetsP . … ,
Pr with :

I1 θ,PRε로2 ) ,5 , P, AP; = $ if 「F5 3) 없 P: = [O , |]

Assumptions on ufiITfy :
1) +:

,
(( [o , 3) =1 and Ui (φ ) = ①

.

2) ( G( PUP ' ) =U :( P ) +i(P
' ) for P

,
PEI

,
PNP

'
= 1

.

3) θαε (O ,
! )
,
Finferval [a ,

b] with U: ([ a .b3) = α .

4) .(P)2 ① HPEL
.



Leading Example : Suppose for all T, 크 funcfion f. :[0 , 1]→ 1R+ s.f.

U. (Ca ,b3 ] = S
.

"

f: (× )d× and f.
f

.cx)d×= 1
.
(aPDF )

Def ) Proporfionlify: A partifion P ↓ …
,Pns.t .U:(P .)2 금 =

.(끔
.

Pef) Envy -Free : Aparfifion …
,Prs. t .법 ; , U:(P:) 2 U:(P;) .

Obs) Ifa partition 「s envy-free , then it is proportional.
Proof : Let P.

… .Prbeenvy - free, then( ((P: )2 U. ( P; ] HJ ε [nJ.

n . l: (Pr) = × U.(P :) 그옳 .(: ) = (((,=(U :( X) = 1 .
⇒ U:(P.] 2

금

,whichisproportionality ,
However

,
a division may be proportional , but not envyfree .

ex) A= E 1
,
2
,33
,
(U. f, : [ ① ,

1]- IR as follows :

f
,
(×) = { ?

if ×ε (
ootherwise

"3]"

힘 "
"

다
.

그 fa(×) = EB :f ×ε (40therwise13
f

3 ( x)=1
.

>

Consider the partition P( = [① .
Y93

,
P= ( 49

,
89)

,
P= [ 89, 13

.

This is proportional . However , agents 1&2 will envy 3 . ,



Is there an efficTent algorithm guaranfeeing proportionalify ?
LsDubins - Spanier Algorithm is one .

,
knife

a 첬
!

at least ( - yn) to all other agents
to the agent
called stop

Proof : n=2
,
then obuiously proportional since agent who calls stop

gets utility Y2 , and the other gets utilTty 22 .

Suppose that any problem with itlagents gets a proportTonal
partition . With nagents, the one who calls gets utility Yn .
For the remaining agents, the remaining cake is worth 2

( - )=끔
. By induction hypothesis , the algorithm gives

each remarning agent at least [금] 이허) = (김 ) of the cake .
,

How to analyze complexity of this? → Query ComplexTty !
Two oracdes .2 /Eval :([ a

(b] )returnsi ([ab])
,

2) Cut. (a ,
α) refurns b s.t. U: [(a .b3 ] =α .

Algorfhm)Dubins-Spanier :
Inifialze : A←A

,
X ← [ O

.
13

.

While Aisnonempty , do.



1] Leta s.t
.

*= [a ,
l]

.

2) Let CG =Cuf
:(a .

서 )
.

3) Let TEA s.t
.
CG≤C ;JEA

4) P. ← [a ,
G )

,
A ← AE: 3

.

Output : Partifion EP, . … ,
Pou : 133 of the cake

.

Analysis of QC : O(nz ) calls to Cut , ( nloops , (n… 1 ) calls each )

Claim : We can do better
.
sUse binary search !

Evan - Paz ( Assume n =2
k

,
k>① ] :

Subroutine(k ) : GTven iterval [aib3
,
let C. . = Cuf: (a , ⑫) . Order

agents s.t. C.≤ C2≤ … ≤ Cn
.

Then
,
create two subproblems ,

I ) A =」
…

,n23 , X =[a
,Cn )

,

2) A = 도다. …, n3 , A= (nk[ 1
,

b]
.

Call subroufine( k-1 ) for each subproblem unless k= 1
,
which is

the base case of having a single agent in each subproblem ,
where

we can assign that agent the remarning porfion ofthe cake .

Obs) There could be " middle pieces
"

that are unassigned . Give

those to any agent arbitrarily .



Claim) Evan - Pas is proportional .
Proof) By induction on K . Base Case : K=1 → agentIgets [a,C.),
and agent 2 gets (C2 , 13 , which are each worth

Y2 to them .

Suppose (K -1 ) case holds. Then , in the subroutine (k ) , each

agent in a subproblem gefs (byH) * of the cake in the

subproblem .
But the cake in the subproblem was worth at least

2 of the whole cake to them . So
. they get at least 화앞서

=e = 김 of the whole cake . ,
Analysis of QC. Ocnlogn) calls to Cut, ( logn calls for every agent )

What about envy
- freeness?

Theorem ) There exists an envy- free partition for any cakedivision

problem .

sTheproof of this theorem relies on Sperner's Lemma .

bigression) Sperner 's Lemma : Triangle F = E(X,λ 2, λ3)E1 R3
1 × ,, Xn1X320

Λ × 1+×2+x,= 13
.

Vertex (T] . Ee, e,es3 .
e 3 [ o , 0 , 53

<b0, o] [o
,
1
,
O )

a ex



Pef)Triangulation : a collecfion T… ,Tkoffriangles s.t. T is
the urion of T. … ,Ta and for any fwo triangles F. and T ; ,

F. AT; is either disjoint , a vertex , or a side (when :FJ ) .

Def) Sperner Coloring : function C : Verfices(π)… ,×)→E 1 , 2, 33 s .t.
if X is a convex combinrtron of ex and e ; , CCX ] EET , J 3 .

Pef) Rainbow Triangle : TrTangle π s.t. coloring ((Vertex (π]] =[ 1,2 ,33 .

Lemmal Sperner 's Lemma : If cis a sperner coloring , then at

least one ( infact , an odd number of ) triangle is a rainbow

triangle . ( Proof is by a parity argumeffromI -D )

Proof (Tn n=3 agentsJ : FTX mEIN and a friangulation T. … ,k
s .t. If X ,YEπ ,

then IX-yll≤ /m
. Assign labels from EA

,
B
,
C3
,

to the vertices of π'… ,Tk s.t . eachπ has all three labels. Define

a function Cfrom vertices of π
.…
,* to El , 2 ,

33 by c(x)= J if

Ua(p
; ] ) 2Ua (ph )forthe divTsion P

'
= (0

,
×
,)
, P
β= [X, , X .tX2) , P

3
= [X ,

+s
,

1 ] and aEEA ,
B

.
(3 being the label of the vertexX .

CTS

a sperner coloring be cause if XTs a convex combination of

eiand es , the piece chosen by utilTty ua mustbe eTther iorJ .



BySperner'sLemma, thereexistsa friangleTrs . t.if T .hasverftices

Xi
,
X:
2

,
X
"

,

then( ( Xi) =1 ,
((Xi )=2

,
and C (X; ) =3

.

These are

owned by A ,
B

,
and C

,
and allthese verfices Xm

, ym , 2, respectively .
(CXm)

온
( (ym) , c ( 2m

) 3= E 」 , 2 , 33. Thesequence( X; y :z" ) ,(x , Yi 22 )…

in T must have a convergent subsequence . Let this subsequence be

Xmel
, yme,zme )wherel2 f

,andlet
W
*=Xe= yme=I. zme .

The Iimt is the same as lxme. ymel/<→① andllxme-zme1<
m
→1

.

Then there mustbe some order of the pieces that occurs infinitely
offen

.
WLOG

, say ( 1 ,2 ,
3) = (c(xme)

,
((yme) , ((zme)) for infrnifely

many l . So there is a further subsequence (Xmen , ymen, zmea) forhit
with (C(Xmen)

,
(( men) y
,((zmn))= ( 1 , 2 ,

3) for h21 . The vector

W
*
= (ω*

,
ω*

,
W3
* ) is associated with the diuision . (w* ) toA

,

Pa(w* ) to B
,
and Ps (was to C

.
This is envy

- free since (f
, say

A envies B
,
then ( la(P .(w *) ) < ( UA(P(

w*;
)
,whichwouldimply

by continuity of Ua that UA (P. (Xmen))< Ua(P=(Xmenj) for a lange

enough h . This is impossible as P, (xmen) is afavorite piece from

PCxmen ) to A . ,



Theorem) Stromquist : There is no finite algorithm for finding
a simple envy- free division (with n23) .

TheoremI AzTz& McKenzie : There is an algorithm that computes
an envy-freedivisTonwith nagentswlquerycomplexTtyO(

nnnn
"

)
.

Fairness in Cost I Value Sharing
E×] Columbia→ C ,

ParisI→P
,
Oxford→O

.

ㅣ o cy to op copTravel expenses : C P ㅣ ㅣ ㅣ 1600650 100 3oo li3to 1400 1450

Def ) Game in Characteristic Function Form (Tranfserrable (lHilTfyGamej
A pair ( N ,

VI in which :

I] Nis a nonempty fintte set of players .
2) V . 2

↑

.IR +isthecharacteristicfunof the game .Gpowersetof N
We assume that U ( φ ) =⑤

,

and AEB ⇒ V (A) ≤ VCB)
.

Def) Coalifion . A sabset AEN .

Two intepretations of the game (N ,
v) :

1] HAEN
,
√ (A) is the fotal value (utility] that can be generated



by the players in A alone .
2) HAEN

,
VCA) is the cost of serving the players in A with

some desireable benefit
.

E×] N= E 1
,
2
,33 . u (A) =Eif 1 A122

therwise
(divihe adollar by majorify

"

>

E×2) N=$ 1
,
2
,33 . 1 s seller of an indivis:ble good worth ① to themself .

2s buyer who values the good V2>0 .
3 → " V37V 2>①

.

⇒ V (:]E 3 =① for =1
,
2
,
3
.
V (E2

,
33) = 0

.

√ (E 1
,23) = l 2

.

V (E 1 ,33) = V3
.

V (E 1
,
2
,33 ) = V3

.

E×3] Cost in a graph : N = [ 8] , θ A , v (A)= cheapest way to

없
connect all agents in A .

(MST for A= N)

bef) Marginal Contribution : For a (FG , player : s marginal contrTbutTon
to coaltTonSENis* ( S)= V(SUE( 3 ) -V (SE( 3 )

.

Recall that an ordering of players in N is a complete ,
transitive

,
and



antisymmetric binary relationship . Denote byπ the set of all

ordering of N . ( 1π )= no where no= INI )

Def) shapley Value: A player iEN in a game (N , r ) has sl of

. (γ )= 금.×÷ ( S (2 , : ]] where S(2, : ) . = EJENIjz: 3 is
the set of all players who precedes T in the ordering 2 .

→ For the Traveling Expenses example ,C =308 .33 , P=608 .33 , 0= 683 .33

Idea : If ×ε1R
α
,writeX =[

X … ,
Xa] so thatwe can think X

as a function from the set E 1
,
?
…
ds intolR . The value of the

function at h is Xn
.

For a game iv ) , think of vas a vector in

the space (R
2
"
- +(thereare

2
µ - 6nonemptycoalitTons )

Fix a setN of n players . Let β be the setofal ) functions v. 2
µ× 1R

+
s
.
-
t

(N ,
r) is a CFG .

=
SL):

Def ) Solution :functTon8「IR "s.t .HVE σ ,=√ (N ) .
[SCV )IR1 so Scv ) = [S.( V ) … ,

Sn(vs] ]

Def) Substifutes : Players : and ; s.f . θ game V, HAEN , AFT , AF; ,
Dδ(A) =K; ( A) .



Axioms : L] If Δ: ( A).4부 (A] HAEN
,
then s.(V) ≥S .(ω

)

.(margrnally )

2) If Tand; are substifutes in game V , then S: (V) =S;(V) .
(substitute players/

Theorem : [ Young] A solufion safisfies the marginalrfy and substrtufe

players axiom iff itis the Shapley Value .

Each vER is a function v . 2µ, (R+ with v(φ) =6 . So
,
if is a

Vector in IR
2.

Def ) STmpleGames : a coalifion TEN ,
「F 0

,
V+( A) =AETEA 3

.

Lemma) The collection of all simple games form a basis for IR
2
-1

.

Proof . Let's prove that simple games are linearly independenf. Suppose
towards a contradiction that there exists numbers arElR for all TEN ,

T#Q s . t⑤=IATVTw, and af least one dr is nonzero . Let TAbea

coaltion with a*F ①andminimal w.r.t. this property , i. t. 「ETA

⇒ ar = ①
.

Then
,
⑤=v
,Fd(

VT(T*) =v a.V((T*) + IGVT(T서
E*,45
~

0

⇒ ⑤ = d*.. Contradiction since ae*F① .

"

Lemmal Ifs satisfTes marginality and Dδ( A)=D약 (A) HAEN ,
then

Si(v ) = S : (ω) . ( . : S: (V )≥ S+(ω ) Λ S:(v) ≤ S:(w) .)



Proof of Young
'

s Theorem : Recall that the trivTal game ⑤ER

has s.(⑤ )≥ ① forall :and.s :( ⑨ ) = ① ⇒ , S. (⑤)= 0 . By
the first lemma

,

for any VE , FTEIR ,
TEP(N) . = set of all

nonempty subsets of N s.t .V=

v,aV .Let Y( v )= ETEPCN ) I

ar# 03
.

The proof isby induction on the cardinalty of Y(u) .
Base (ase: / p(V) / =1

,
so fsome TEP(N) with V= a+V 다

.

Consider

first iεT
.
Then D부 ( A )=① for any coalifion A . Butthen ,

F(A )=Di (A) HA . By the second lemma , ST(V ) =S : (④ ) = 0 .

Consider
,
second

,
T
, ; ET . Then iand ; are substitute players .

By the substifute players axiom ,
S=(V) =S; (V )

=8
.
Then

,

αT= V (N )=(ST(V )+(S.이=γ.이Tπ ⇒γ=1 .

Hence
,

SiCV ) =[,습다
.

( HW . SV safisfies the axloms ⇒ S(V) = φ(v ) )
Inductire Step. Suppose that HVEP with ITcv ) l ≤K1 , we have s(r)= φcr).
Consider a game VEP with (Tcr! = k .Weshall prove that scr )=φ (r) .

Let T* .=Λ T
.

Recall V=v.a+Vt .TETCv7

Case I] [4TA
.

Pefine W =Za+V← , then( TCw)</ TCv 」 l =
K
,sosiTE「TCV) ,「aT

But for any coalifion A , Di (A) = V (AUE: 3)
-V (A|E:3) =



높.dTVT(AUE :3]-다v

.,arV((AIE : 3)= 다

v,drD역( A)=
.[ara
+사=←(A)= D :

W

(A)

∞ by the first lemma , S((v )= S:(w) = φ :(V ) .

case 2) [εT*
.

First
,
「f T*= E : 3

,
then S . (v) = : (V) because

ST(V )= V ( N)-합S,( v ) =V(N )- 높(V) = φ: (V ) . Second ,

suppose T
*
contains at least twoplayers . If iJ εT

*

,
then

T
,SET TE' TCv) . Hence : and ; are substifate players in T ,
and thus they are substifutes in V since θA , 약 (A]= v

,GDI (A)
.

Then
, by the substifute players axiom ,

Si(V ] = S;(V ) . =r . So θTET
*

,

s: (V )=r. But φ also satisfies the axioms
,
so there is α= φ:(r)

θ T εTA
. Finally , vS .(V) =vS:( V)+vS.(v)= 없φ.(v)← / TAIγ= V(N) .

⇒γ. ITA = V ( N) -Ʃ 4:4 ) =v.(√ ) =α . 이T* ) .「hus , γ=α .
which

TAT*

:mplTes that s:cu) = φ(CV ) θTETA . ,
Lattr?butes)

Applkcattion ) InterpretableAI. SHAP . GTven a set Nof features .
say IN= n . The model will be f . XElR

"
→ IR (e.g . Neural Networks) .

For any subset of affributes SEN ,
let v(s) .=E[f(* ] I *; = X: HVES]

.

Then
,
Y
.CU ) gives a decomposition of V(N) = f(×) ,.e. of the prediction

that can be attributed to the featureT .



Appication ) Voting Games: Set N .= In] of voters . VoterT has ωi
votes to cast

. q τs the supermajorty threshold. Agame is defined bg :
V (S ) 8= E ifwiztherwiseq. Thenφ . (u) computes the "ower" of the

Player T. E× : N = EMom ,
Alice

,
Bob

,
Carol로

,

w=E 20
,
5

,
2

, 13 . 9= 18 .

" Here
,
Mom has all of the voting power. E×20. UN Security Counsel ,

where N = 5 permanentI 1o rotating members , q= 9 , but permanent
members have Veto power . φpermanen+= 19 . 63% , Pr.tating

= 0 . 69%
.

Application) Claims Problems:
"

Two hold a garment , both claim :fa ( l
.
Then

the one is awarded half
,
the other half. Two hold a garment , one claims

itall
,
the other clarmshalf .Thentheoneisawarded314 ,theotherY4.

"

Def) Claims Problem. a tuple (C,… ,Cnix ) of nagents where each

agent : has a claim CG20 ,
and X≤ ICr 「s the total to be shared .

ex) A company goes bankrupt . There are n investors/workers with claims,
ufb assets are worth X≤ IG

.

ex) A person is deceased . n inherifors . Each was promised an amouf G2①,
but when assets were ligardated , they amount to x 스 IG .

ex) suppose Akce &Bob inbert $ 300 ,
000

.

AlRce was promised $200 ,
000

,



and Bob $ 300 ,
000

.
How much should each get?

∞ According to proportionalify ,
A = $ 120,000 ,

B=$ 180
,
000

.

L∞ According fo confested garment , A= $ 100,000 , B= $ 200, 000 .
' This is actually the Shapley Value !

bef)ConfestedGarment.givena claimsproblem( C), C 2, ×
X ) with 2 agents,

let m
. .
= MaxEX -C

,
①3

,

and M. =max:X-(2 ,
①3

.
The solution

is to give 1 S=
M 2+X
-mand2 s 2=m ,+X

-m-
.

ex) Alice: 80
,
Bob: 60

,
×= 1OO

.

→ Sa = 40 +20 =60
,
Ss= 20+20 =40

.

A Problemafic Example : 4 agenfs, Alice , Bob , Chana ,
Palia

,
X= 600

.

X A BCD s Aice and Bob spli4s 300 differently
o6 200 300 200 300 from the example above ! →Tnconsistent

φ 116.66 (83.33 ( 16. 66 183.33

Effrciency and Fairness

Recall : An assignment problem is a tuple (O ,
4
,
A

,
EE: ITEA3) where

Ois a finite set of objects, is the outside choice , A is a finite set of

agents , and E: Ts a strict preference on OOE φ3 HIEA .



Assume (mainly for convenTence) that :

I] 1 A1 = n . 2 )dis rankedlastby: EA. ⇒ Allagentscan get
an object , and we can assume WLOG ignore the outside option .

bIn this case an assignmenf is a function M : A→ O s
.
t
.

if ata'

,

then U(a)⇒µ(a
' ) ( bijection actually ]

EX] A =Ea , dz, α
3,

a
43,

O

= E 0, 02 , 03 , 043
.

노
, * * 3 * 4 → possible PO assignments :

O . O , O3 04 ds ㎡ ㉛ 이 2

ㅣ1 213 ㅣ1312 %
s

O. O 3 O , O3 2 O
,
321 O 2 (23)

O3 O 2 O2 O
2 a3 ⑬ ③ ㎡

O4 O4 O4 O a4 O4 ⑭ ④

Let X be a real nxn matrix with one row for each agent and one

column for each object. Lef Xa, be the probabilify that aEA gets o .
X = 었 Y* O O for the example above. In fact , the

ㅣ ㅁ Y⑬ Y6 Oㅣ matriy and random assignments are

O %51% O bijectTve.

O o 이



Let ( O , 4 .

A
,
E *l : EA3 ) be an assignment problem under our

assumptions ( 1 =(A= n
,
d ranked last ) Then ,

Def) Random Assignment : an n× n mafriy
,
with Xa

.
.
ε [o , 1] θ aEA

,

OEO s.
t
.I ) IXao = IHaEA ,2 )AXao= 1 oEO.
ㆀ

s a RAis fractional if Xaoε ( O , 1 ) for some aEA , oεO , and is integral
if Xa =O, 13 HaEA, OEO. An integralRAis alsocalled a
permutation matrTx . In an abuse of ferminology , we call them just
assignments . → RA is actually a

"

layering
"

of weighted assignments !

Obs] If X is a RA
,
then each row Xa is avector EIRiwith

.
Xao = S

,

so it's a lottery over O .

Theorem) Birk off- von Neumann : If × is a RA
, then Fa collectTon

X !
…
Xk of assignments , and numbers λ! … ,

λ
*

s
.

t
.
:

1] λ" ≥① θ K = [ K ]
,

2)×λ" = 1
,
3) ×=옳* ×" .

Idea : Round the RA until we reach an assignment.

Pef ) Alernating Cycle: sequence of entries in the RA matriX X ,
Xa

, o
'
,
Xa2 oz ,
.….Xan

m
ε
( ① ,

1
)
s
.t .1) all( a,

.
)

… d0 ,) m
aredisfinct

,

2) If mis odd , Xamom and Xamyomy are on the same row (am= dm+. ) , and



if m is even , they are on the same column ( om = Om+ i )

3) Om= O , Clast and first are in the same column )

Lemmal If X is a fracthonal RA
,
then it has an alfernating cycle .

Proof : First
,
since Xis fractional

,
we can choose a fractional entry Xa , o . .

Define Xamom by induction . If m is odd, we know ,
since 동 Xamo = 1

,

that 7 some Xamo . thatis fractional . Define Xammom*← Xamo
.

If

m 「s even
,
there is Xacomε (⑥ , 1

)

.If a 'om =.o: s.t. :< m, stop
and relabel 「← 디

, … .
m← M

.

Otherwise,letXamtiome, ← Xacom
.

The cycle must close since the entries in X is finite . ,

Rounding Algorithm : fracfional RA X→ assignmentX .

while y is fractional
,
do :

I) Find an alternating cycle (by construction in the lemma)
2/Find the largest ε (can be calculated explicitly) s .t. if we replace

Xamom← XamomtE for odd m and Xamom←XamomE for even m,

then Xamomε [① ,
1] (⇒ 7 Xamomε E① , 13 )

Obs) By the lemma, the algorithm is well defined . Affer each
Tteration

, X remains d RA , and by our choice of E , there is one
Cor more) fewer fractional entries in X .



This means that the algorithm fermTnates in θ(a) steps and

outputs an assignmentXwiththepropertythat if*
then X.
Obs ) If X is an nyn matrix s.t .IJXoo 2 ①o)EAXO ,forsomec7

2)다oXao = C HaEA , 3] AXao= CYoEO, then eX is a RA . So ,

by the lemma , F an assignment * s.t. if *.히⇒김 Xa.>①⇒Xa.>① ,

I
.
e
.

the lemma applies to any matrix with 2① entries and constant

rows and columns sums
.

Proof of BuN Theorem : Apply such algorithm to X to construct XandN .

Input . RAX . InitTalize XC 0, 2= 1%

wWhile X#0
,
do :

IJ By the rounding algorithm ,
find an assignment* s .t. Ta=f ⇒ Xao>①.

2) Find min Xao>① sot
.

o=1 .

Let this value be λ
.

3) X← XUE* 3
,
N ←MOEX 3

.

4JX ← X - λX
.

Outpat. X andN
.

L.Thealgorithmprovesthetheoremsince
X

=kXk where



N=λ .
… .
λk3 and X = EX, . Ak3 withorder preserved . ,

Now
,
consider adding back an outside option d.

EX ] A = Ea , da , a3 ,

a43
,

O = E0
,
O 23

.

Preferences are such :
s RandomizedSBA

Y
,
Y
2 Ys ≥4 Consider RSP

. Pr[a . getting o.] = PrEa , is first]

01 02 0
,
0. fPrlazorda is first] . Pr [a . goes secondlazorda isfirst]

02 0
. 02 0 . =* + 한놓 = 소+=금

0 ① ④ ④ Prla . getting o2]= Pr [as is first] . Pr (a , issecond / asis first]

XRSD O
,

O2 = 최않 =금 Also
,
Prla . gefting ⑥] = 12 by symmetry.

a ,
5/ 22 Then

, we can fillout all other rows by symmetry .
a

2Y .2 5k OsbRAcould be found by setting fwoextra

as 5ky 2 columns that sum up to I , corresponding to d .
a4 Y2

5/2 So
,
a 4× 2 matrix is sufficTent representation .

Howerer
,
if we

" '

rade Yo chance of one agent to another with 5/a , we

obtain * = (
"

용옮I
,

which is more efficient for all agents !

DTgression: Let (A ,
①

, φ , *: : EA3 ) be an assignment problem . Define a

probabiity PE D(OUE$3 ) as a lottery . So if we denote OA.= OUEP로 ,



then alotteryspecifies aprobabilityP( θ ] 2 O EOA andC*P( θ)= 1 .

GTven apreference2 onOX,denoted by U*(θ ] = EEO * 1 :θ3 the

upper contour set of a at θ . We say that a lottery pfirsto_

stochasticallyolottery g for 4 (denoted P FOSP* q] if

H θEO
*

, P(U* (θ] ] ≥ q( φ* (θ ) ) . Also , we say that p strictlyg
if PFOSDg and atleast one equality is strict .
Obs) pstrictlyFOsDqif pFOSDq and p4g . ( proof as exercise)

Det) Let 2 be a PRover Ox and v .OtsIRbe afunction . Vreprese
ETF VCOJIVLO' Y ⇒Y θ

'
HO

,'EOA
.

s Given such a function r , we may calculate its expected value :

EpV =Go*P (θJVCθ) under lottery p .

LemmaJ PFOSDiffEpγ ≥ Eqvθ Vthatrepresents * (proof in Pset 2 )
b 2 is agnostic to cardinal values of u , as long as they are consistent !

Pef ) Ordinal Pareto Dominance: a random assTgnmentX OPD another RAX '

if θ : εA
, thelofferyX(ED(O× ) FOSP*: X; , and (더 strictly FOSP:

X; for at least one :EA
.



Def)Ordinal EffTcTency( Pareto Opfimal ) : aRAX that is not ordinally PD

byany other RAX :
G In the previous example , XRsP Is not OE sTnce TFis OPD by X .

How do we find such ordinally efficTent RA?

Algorithm] Probabilistic Serial (informally) . .또
ex) A = Ea , a2 , as3 ,

O = E ①
,
02
,
①33
,

*= 않 ,
양
.

Think of each agent having a
"

Pac- man
" that starts eating away their

favortte choice until exhaustion
,
then move on to the next one .

2 (23)
ㅇ프.. ..이δ

.
.

.
..않다." 있어

Back to the firstexample ,
$ . 5. 8o, O2 0 , 02

,

and we are done
.

The outcome 「s exactly XPs =X .

Claim) Xps will be OE and Enuy- Free .



Algorithm)Probabilistic Serial . Let ( A .
0

.
φ . E: ! [EA3] be an assigument

problem .
For any subset O'≥ O

,let M( be the set of agents
:EA thatrank o at the top of O; Te .ETEAIOK HOEO

'

Z
.

Input : Assignment problem (A ,
0

, 0 , ε 는: liε A3) .

Initialize : X← Onxm
,

A
'

← A
,
O
'

←O
.

while $l30and 1O/7 %

I] Lety ELo , l 3 be the largest numbers.t. HOEO
'

,

cake eaten← .sofar X
, 0
+ y . fM (o: o]/ 다 .- f agents eating o at this Tferation

2) X,0 ← X,0 tY HTEM (O:0] HOEO
.

3) By def. ofy ,
at least one oEO '

satisfies ×$,. =s . Remove all

such objects from ① .

sno
contest

4) Remove from A
'

all agents who rank f above any objectinof

Output: y .

Runtime: O (101 ) 「ferations
.

E×] (formally) A=Ea ,d 2,d ,

3 , O=
E
01

,
02. 0 ,3

2 = .

. ,.
XRSD = Y246 Y3 XPs= ⑫

Y2 O 있 Y=
송 "짰[ ] "0516 % O 314 Y4

.



Def) Envy -Free : RAX that HIEA X: FOSD*:X; UJFT .

Def) Weak Envy- Free : RAX S.t. F : ,SEA X, ET X1
.

Obs) XRSD is nof envy-free . Consider theprevious example . U *, (o. ) = EO .3
,

.
(O2)U =90

,
0②로

,
* (O3]= E0 ,02 ,

033
.

Then
,
we can wrile a table :

.

×용맞. 홍
so neither lottery FOSD for n

.

Pef) Ex-postPO :RAXs.t .FPOassignmentsXi,X2, ,Xe and numbers

λ∞
…
1λkZ

0
, 옳기 = s s.t . X=좋 λTX: .

Obs) XRsD is ex- post PO ( by definition) .

Theorem) Lef (A
.
0

,
φ
,
*:I : EA3)beanassignmentproblem. Let XRsDbe the

output of the RSD algorithm , and XPs the output of the PS algorTthm.
Then

,
IJ XRsisex-post PO and weakly envy- free but may not be OE norEF.

2) XPs is OEand EF
.



Given a random allocationX
,
define a binary relation Ty on O .

say that o πo ' if 7 some agent : for wh?ch '4, 0 while Xi, .50.

Def) G isif there is no sequence of distctobjecfs o ;o ?…, ok

s
.
t
.

O'×
O

③
,
O

α×O
β

,
…

,
OKT *

.

exlIn the Y2 example , we had [없다]
.

O
.T. O . because a. has

X ,02=
' 12>①whileO .7.O 2andashasX 210 , = Y2>① and O2* ① 1

.

Lemma) A random allocation Xis OEiff Tx is acyclic .

Proof . ⇒) Suppose that × is not acyclTc . We should prove that y is

not OE
.
Since Tx is not acycic , Jasequenceofdistinctobjets s.t.

O' XO 'π' …' XO
.
Now

,

Ok π OK" means that 7 some agent io

s
.
t.Xxox >①and①"

×

.Define X' byhavingX = X.

except for X,6 = X*..- ε and X0*=Xik,ok* ε .

Then
,
θk

,

동X*= 1 sinceweareaddingandsubtracting E same # of times .

Similarly , for each object O6, × X, o. =1 because we ±E once each .

FTnally ,
since X*,0k >④, * .≥① for some smallenough ε ,

and

X×
,
0k*
≤ / Since Xi**,ok← .>① implKes that Xik,o*< 1

.
So

,
ε>①

→ xis not OE.

smallenough X*,*= Xi*,세≤1 .
X

'FX, andX :FOSP:X:θ TEA. ( 1



≈) Suppose Xis not OE . Let 's show that T× is not acycl?c. Let × 1

FX be a RA where X! FOSD:X, θ TεA .

So there must exTst some

agent T and two objects o and O 's.t .X,0> Xi . 2①
,
X,0)X..>일

and o' : 0
.

Observe then
,
that o' π

O

.Moreover ,sinceX. .>X;,
,

there must exist some agent ; sot. Xs0'> Xs. 20 .

But because

X; FOSP2
:

X; , there must exist some object O
"
s.t . O

"

7
,
O
' and

X: ">X; . 0 .≥0 . So we condade that I] 70 ,
0 '

s
.
t .O× O, 2) whenever

OXO'

, Jo
" sot O '* o

.Thus,sinceO isfinTle, Fa segquence of

distinct objets with 이× O
'

πO
3
… O

µTO
' "

Lemmal XPS :s OE .
Proof . Suppose ,

towards a contradiction ,thatXs :s not OE. By the

Previous lemma , then J o; o2 ? … ,OK distinct objects s.t. OXO2,O',

…

,
①
-

πO,OK T× sO.ForeachcomparisonO ⒃TXPs Ok
*
(mod K )

,

J an agent :
"
s
.
t .X ,0.>①whTle

①

" ,
.
Penote by tk

the first time that ik 's pacman starts eating Ok in PSA .

Observe that at time t,oktt must have been exhausted
.
So

,

t " must come stricfly affer t
* ( t"> t

*" )
.

So
,
t ' > tr



)…> t
←
>t

,
which is absurd

.
Contradrction

,
XPs Ts OE

. "

Proof Idea for EFof XPs : observe that the rate of eating is the

same for every agento So, for each agent , nobody eats more
of one's specific preferred ordering Cidentical ifsame 4, ) .

Social Choice

bef) SocTal Choice : tuple (X ,
A

,
ε 2: | :εA3 ) in which :

I) X is a nonempty set of outcomes . 2) Ais a setof agents .

3 ) H :EA
,
2
:
「s a preference relation over X .

Obs) Preferences may not be strict. Also , we usually assume that

Xand A are finile . a
1
a
2

∝
3

E×IX= EX .Y ,23
,
A = Ea,a2 ,

a3?
.

숄 붓 긋
y

Vote between Xandy→ X %( 1 ,3) , y : (2) . Xvs 2→ * %( 1 )
,
:( 2,3 )

.

y Vs 2 → y : ( 1 ,2) , 2 % (3 )
. Majority vote has ×>y >27× 공 ? ?

⇒ Condorcef Cycle !



E×2] Judgement Aggregation Cnot really socTal choice )
Contract law : If obligated contractually and farled to comply⇒ lTable .
Three Judges : Alice , Bob , and Judy .

obliged Failed Lrable

A Y Y Y

B N Y N

J Y N N

Ma; Y Y N ⇒. ??

E×3) X= Ea ,
bicid 3

,
1 A=21 with four kinds of preterences :

(3)*
*
(5) 는 (n ) *( 6 ) suppose everyone votes their

옴 옴
b

등 top choice . Tally adds ap to

{ d
옴 d a= 8

,□ b = 7
,
C= 6

.
d= O

.

sThis is bad because 13 ppl regards a as the worst choice !

⇒ Borda Count (score) : a ba d

Tally adds up to ← * 3 2 ∅

- 3 1 2 ①

a= 24
,
b= 44□5 = 38 , ~ ① 3 12

d =20
.
( bycsasd ) Λ ① 2 31



Consider a graph st. set of vertices 2 set of outcomes
. Edge xsy

exists If a majortly prefers y over X .

¤ㆁ Based on this graph ,

cshould be selected !b

↓* ↑ (Cis a CondorcetWer

θ⑨
Scoring Rules : suppose IXFKFix numbers S . ≤ S2K … ≤SK .

Assign outcome x Sk points each time one agent ranks y the

top k - th position ( Kis top posifTon , ITs last) . Then , e .g . ,
BordaisSk = k - 1 , Plurality τs Sk = AEK=K 3 .

Ex) Women ' s Pursult 2014115 IBU BTathlon W
.

C
. 7 races

,
each

athlete gets Sk points for placing in the top- k position in one
race

.
Total points are addedup . Scores are allocated as such .

1
,
2
, … ,

31
,
32

,
34

,
36
,
38

,
40

,
43

,
48

,
54

,
60

.

Athletes Total Points Athletes Total Points

Makrainev 378 Makrainev 378

Glazyvinca
Pomracheva 37 ⇒ pomracheva 378 ( rebreaking

Removech
: : win)

Glazyvina 190 ← ∝



Recall that (X ,
A
,
E: l : EA3 ) is a social choice problem .

If A =1 ,
2
,

… , 73 , we can write preferences of the agents as

a tuple 는 = ( *",22 , …,En ),which iscalledapreferenceproft
FTX X

,
a finTte set of outcomes. FTX A= In] set of agents. Denote

by L the set of all strictpreferences overX .

Obs) We insist on strict preferences now .

Obs) ∠' is the set of all preference profiles .
s How do we aggregate

' individual agents ' preferences ?

Def ) 1) SocTal Choice Function : A function f . l"→ X
.

2) Preference Aggregation Rule (PAR) : A function f . L
"
→ L

.

TwoNormative Properties : A PAR satisfies the ParetoPrinif

발L"
,
if X*Y TEA thenX f (4)y . DenoteN (*x.y].EiEAI

CIIA)

× *: Y3. A PAR satisfies Independence of IrrelevantAef
방

,
SEL"

,
Tf N (E

,xiY ) = N (E .
x

,y) , then fca ) should rank

X and y the same as f(* ) .

Theorem ) Arrow's Theorem: IF 1X 123
,
then a PARf satisfies the

Pareto Principle & IIA iff F :EAs .t. f (오)= *: KEL
"
(dictator)

.



Proof : ⇒) Leff .("→ L satisfy Pareto and IIA .

Let B(X
. y ) be the set of all coalifions T for which 5 * ε L

"
s
.

f
.

N ( *
,
X . Y ) =T and xfc*) y .

Observe that B(xiy) isnever empfy .

By the Pareto Principle , A (Coalfionofall ) isalwaysinB (X.Y).Consider

the set of all coalifions that belong to at least one B(X ,Y) H ×FYEX .

Let T be a minimal set in this collection . So , :f T
'

ET⇒T
' does not

belong to any B(X.Y) . We claTm that such Tis a singleton ( lTπ= I-
Suppose , fowands a contradictTon ,

that (T ( 22
.

Then
,
we can write

F=T,
UT

2
z
s
.
t . π,zF $and T. ATa= 6

.

Let afbEXs
.
t . TEB(aib)

.

Let ( Faib (exTsts as (X$23)
,

and consider a partcularprotile: ELn
which is as follows: irst, sinceTEB ( a. b),

J
* '

s

.
t
.

N
( E:a ,b) =T

Z
: ITET, I : I: E 2EI TEAIT and a f (usb

. By IIA ,

a C b af (a) b
.

Second
,
If we

b a C
had a f(*)C ⇒ IEBCa .

c)
,

C b a
but this is impossible since

Tis aminTmal set
.
So we

must have cf(*] a
. By



transitivity , C f(*) b . So T.εB(C , b)
.
2도T

.
Absurd . "

WLOG , letT = (3
.

so $3 εB (a .b) . Nexx ,
we claim that E 13
_

ε B(X .Y)* First
,
let cF a .

b be arbifrary . Consider the

profile where : First
,
since E (3 εB(a (b) , af(*) b . Second , by

↓ I AIE 13 Pareto
,
( f (*) a

. By transitivty , (f(*) b .
C b So E 13 EBCCib2

.

Now consider some
a C dfb

,
c and the profle1 AK: 3)

b a
Then

,
since E 13εB(C ,

b)
, by

C b

IIA
,
cf(27 b

. Allagents rank bover d . So , by
b d
d C

Pareto
,

b f(*) d
.
So by transitvity ,

cf(a )d
.

But then
,
E 13EBCcid )

.

So $$3 is in every arbitrary B (x .Y),
To finish

,
we shallprovethat *EL

"

,
if × 2

, Y ,
then xfca)y

Choose an arbitrary XFyEX and 2 ELn
. Suppose that X* iy .

Consider a preference proftle *EL
"andanoutcometXiy s .t .

X 5 , 25 yand Z : X * yI with ×*Y ,andzy *

X Iwithy : X.SinceE 3 EBCX.2),wehavex f ( *)2 .

Z xy is unanimous , so by Pareto Principle , z f(2) y . By
transituity ,

X f(2s Y . All agents rank y & y the same in 2 and



"
,
so by IIA ,

Xf(2) Y . ,

In the case of two alfernatives : a social choice function , that
mmuo

chooses one outcome
,
is the same thing as a PAR .

Pef) Permufation : a funcfon o : A→A that Ts one- to- one
.

Def) Symmetric S(F . 밤 ε Ln and to ofA ,
f(*) = f ( (*0)) :ε A) ,

T
.
e
.
the names of the agents don

't matter
, only presence of certain preferences.

Def] Monofonic S(F . A×FY εX = Ea ,bz and **ε
L

"
, : ff()= X

and any agent who ranks Xover y inS also ranks Xovery in * ,

then f (* ) = X
. slassame n

is

odd)

Theoreml May
'

s Theorem. Suppose X = Ea ,
b3

.
Ascf f . Ln→X is

symmetric and monotonic iff JqElRs. t .f( 임it IEieAl.b3(therwise
38

.

Proof . ⇒] Itis sufficTent to prove that the decision to choose x

over y 「s a monotone increasing function of the # of agents who

prefer Xover yo Let aEL
'

soto f( *) =y and let iEL" be

s
.
t
.
the # of agents who rank x overy is I the # of agents

who prefer x overy in ∝
.

Now choose permutation o s.to anyone
who ranks y overy in o also ranks x overy in (2,iEA

.

We can



do this because the # of such agents in 2 is 2 such agents
함. yBmonofonicity, X =

f ( (*l:EA).By symmetry,X =
f(: ). 1
/

) In HW .

Incentives (Strategy Proofness)

FTx a set of outcomes $ and a setof n agents . Let R be a set of

all preferences over X (may not be stril) . FTX a 는 εRn. Then

we obtain a particalar social choice problem (X .A .온 [EA3)
.

Pef) Social Choice Function : a function fo Rn→ X
.

now( allowing R )

Def) Strategy Proofness : a sef s.t . KERn ,
' EAand발ER,

f(÷ U :3]: f( * 이 는 온는 (국 ) [or ,f ( , *÷)2 :f ( *)스,
?

.e
.

nobody is incentvized to ke about their real preferences .

Theorem) [Gibband &Satth. ]Supposethatfis ascf s. f .:fsrange( f(R) )
has at least 3 elements . Then fis strategy -proof iff J :EAsf . 발ER",
f (2) is a top alternativefor . ( Proofom?fted ,

similar to Arrow '
s)

LsWecantrytoavoiddictatorshipbyrestrictingtheproblem
ex) Let RB be preferences that classify X into two equivalence classes ,



the good (the bad , sot. all elements in good are strictly preferred to

those in bad
. Now consider the scf f . RB

"
→ X for which ×=f(*)

means that the # of agents who regard x as good is maximTzed .
bThis is strategy - proof because lying would only work against you .

!

Hardness of Manipulation : MANIP(f ) . ven* εR", ×EX ,
and :

,
does

there exist Lis
.
t
.
X= f ( :

,
*:)? → Can we find a scf that is

computable by means of an efficient (polytime) algor?thm wrt. . n & IXI ,
s
.
t
. MANIP(f ) (5 (NP) hard?

ex) Single Transterrable ote : Initialize CeX .

v .bei 's top

choice in setC
.
If some alfernafive gets Lnk」 +1 votes , choose :f. Else ,

choose some alfernative with the least votes
, say X, and set C

← CㆍEX3
.

Repeat until a winner Ts dedared or all alternatives are exhausted .

bLet fs
"

be a scf computed by STV . We daim that MANIP(fsery is hand .
( proof omiffed , use reduction from 3-SAT)

.

Incentives in Assignment Problems :Givenanassignmentproblem( A
,

①
,
1
.E
: l :A3),

where i, is a strict preference over OA .= OUE 63 , let X be the set of
all assignmenfs , and saythat ×*:×

"
:f the element of O* that : getsin ×



is a, to that in X
0

.
In particalar , a scf fo. L

"
→X

,
where Lo=

set of allstrictpreferencesover
①

,
「s strategy - proof if 발L

"

,

θ :εA
,
and 밤L

,
f (*다) :f (÷, *: ) when f(E) is what :

gets in the assignment f(2) .

Obs) fs
,

thescfobtainedfromserial dictaforship, isstrategy- proof .
⑥

lyingaboutyourpreferencescanonly make you worse off .

Now consider a scf f : ["→y ,
and X is thesetof all random assignments .

Pef ) Strategy- Proof : fst . 밤 ( ", 「 εA , *:타, f .[ *1FOSP:[ *↑' 는÷> ,

svaluerepro
T
.
e
.
the lottery that igets by reporting *: FOSD 호: Wor.t . any V (원) .

Def) Weakly Strategy - Proof . fs .t. 박타
"

,
:EA

,
한L

,
f ÷ ( 노÷ ,.)

FOD:f ,[ ,더). Aiuneomplete order

s issue : f: [: , ,]andf .[ : ,*-: ) may be incomparable accordingtoFOSD원 ,

T
.e. some value repros disagree . SP is much stronger than weakly sP !

Proposition)RSDis SP . PS is not SP but is weakly sP.
proofofpartsofpropoConsidersachinstance

-( o 이
=

3 ,n
=

3

.,
임 :



The"pusman'willeatasucks,

o0ofAnd the matr?x will be :

→ 3/4 ∅ ⑭
Y4 이 O

이 O3

×
PS
= [ ㅣ Y⑭ O3 O 3 O 3
Y4 Y2 Y⑭

① 2f Now,whathappensifagentI misreporfstheir
preference as . *: = (O2>①> O 3>0 ) ?

5 . o.0 . 0. Ψ I⑬ 16ㅣ { ]Y *
① O 이O 3

≥

뭘 Y2
"⑬ %

% O3 O3 O3 ∅ ⑬ (23)

If the upper contour set :(O2)= EO, O23 ,

observe that under Xps
,

this has probability
3/4

,
while under ZPs

,
it has probability 516 .

⇒ Tf is nof the case that f.
ββ

(*
,
*

,
*
.
] FOSD: f,

β"

(*:
,
*
2
,

* 3) . Thus ,

PSis not SP
.,

what about RSD? Let's write SD: ( *
,
≥ ) for the object ( or $ ]

that : gets in SDA with profile EELn and ordering 2 of n agents .
FT× a utlityV : : O×→ IR for agent . Then , their expected afility under



RSD with profile *εL" is 1행.( SD:(* 2)). (akin to SU )
Since SD is strategy- proof, no matter which EiEL andIETπ ,

v . (SD: (ε ,
2)] 2 V:(SD: (* ,

21)
.

But since this is true for any

ordering , we obtain : ×
Vv
.(SD ( *

,
2)) 그×
V

. (SD:[*," ,

2]]
.

Since V: was arbitrary , RSD ( *) FOSP.RSD( ÷,* :) .,

Quasilinear Environments

( a.k.d . economic environmenfs ,
"

with money
"

,
or
"

with transfer" ]

Now
,
assume outcomes have a special structure : λ= (y ,

t
) … ,
tn) in which

YEY
,
a setof decisions

,
and t:E /R Ts a monefary transfer to agent T .

E×1 ) Public Good : Y= E0. 13 . If
Y=①

. then we dont build/acquTre the

pubic good . If Y= S , then we do . Transfers t, ( positive or negative)

may be required to cover the cost of building the public good .
* Sometimes we shall work with Y= [0 .

1 ] and y εY is a prob. of building .
E ×2) Private Good : A single indivisible good for sale . Y= EyεE⑪ 13/

돝 =Cone-hot for who gets the good ) .
* Similarly ,

we sometimes work with Y= Ey = [0 , 13! 품 y대로 ,
s
.
t
. y is

a probability distribution .



Formally , asocialchoiceproblem (
X

,
A,EE :IiEA 3) isaquas

enviif : 1JX=× IRn) with y being the set of possible decisions

2) Each E , can be represented by a utility function of the form :
U.(X] = U: (Y ,

←
…, tn ) = V:( y:)+ t :whereVi.Y -lR .

Pef) Pareto Optimalily: an oufcome (y ,t,, tnl is Pareto Dominated if J
another outcome (y, ti , … .til s.f . :( y)+ t:2 V .(y) + t: θ : εA while

꼈ti ≤ 옳t. ( money 「s constrained 1 . X 「s PO if / an outcome thatPPs it .
Def) Efficient (Welfare MaxTmising ) Pecision : yεY s

.t.×K(Y/2꼈다(y" )
y'EY

,

T
.e. y solvestheproblemofmaay[옳다(y )3 .

CIJaim ( y
,
t . ,tal is PO iff yis efficient .

Proof . ≤) BycontraposifTve , suppose (Y ,
t
, … , tnJ is not PO

.

Weshall

prove that Y Ts not effcient.SincenotPO, F ( y;ti … .til with

V : (y) + t: < V: (y) + t: θ :εAwhile 늙t:2웨t다 . Sowe have
V: (y

' ) > Vi(y) + [t: -ti ] r
,andsummingover τ ,옳침 V .(Y)

+놓 (t : ti] 그 ×. which means yTs not efficient . ,
⇒) Let ( y , t, … ,

tn) be an outcome in which yis not efficient .We

shall prove that (y ,
t
, … ,
tnl is not PO .



Then
, by definition , suppose that y

'
εY s.t. 옳 ((y) < 랩.(y) . Lef ε>①

be s.t
. 옳((y) +E < ( (y"). Definetransfersti= V( (y)+t:-K(y')

+ 등 .

Now
,
:(y"+ t := 6 :( y)ft:+ , > ViCy) tt:θ T,while. t: =

옳다(y)-옳 .(y "+ε
이

않t. < 옳다 .
Hence ,( yot , ,tul is nof PO,

Let V be a set of functions v :Y IR
,
then we may define a scf

f . U "sX
.

The inferpretation 「s that when agents
' atilities over

decisions are (V, . Un)withVEV, thentheoutcomedependsonthem,

T.e.
,
f (U, … ,

γ n ) = ( Y(U, … ,µ n) ,t.(U,…,γn )
,

…

,tn(µ,,µn) ) .Thefuntion

y ( 이 : Uns Y is adecis, and the functions t:(. ) . √
"
- lR 「s

a transti ε [n)
.

ExI Private Good EnVironment with Y= E(y*… , Yn ]ε[0 ,
(312Y= 13

.

Assume a class of atilities V s. t .vεV
,
J⑤E [9

.
1]
"

s
.
t
.
V: (y ) = θ :Y? .

The number θ: is the athat agent : has has for the good .

oOne scf is postedprze."FTxapricePε [ 0 ,1] . Y : (②) …θ n) = {합값p
where 5 =1 E; / θ:2P31 , ti (θ…,θn) = - Y: (θ…, θnlp .
∞ Another scf is the "first -pricesealedbid "auction . Y :(ε ) =IEθ : =m:온 θ:33.

t (θ ] = Yi (1 . θ:
.



s A third example is a secondpricesealedbid"auction. y : (←)= IEθ=ma:[θ:33.
However

,
the transfer rule is t.( ② ] =Y :( ) . m,E θ;lsFi3.

Def ) EfficTency for decision rule : y() s.t. θ (」,…µ n) ,×다(y) ≥×V.(Y )
2 s

i

.
e .onethat make effrcient decisTons .

Def ) Vickney - Clarke - Groves (VCG) Transfer Rule : t. (. ) s.f. ti (U)…µn)
=( U,(Y*(Y.,Vnl) +hi(V. : )wherey *s an efficient decision rule and

초 : .다' IR is a function that only depends on Us for jFT
.

y . ya Y 3

E× ] Y= Ey, Y , Y.3 , n=2 . Valuation are : 않 업 ⒕ 물, → y2 maximTzes K+V2 .

→ VCG fransfer is ← .
(ω,)=18th.(V

2
),tz(u,=(8+ h.(U ,)

Def) VCGG Mechanism . sef f . UnsY ×IR" s.t. its decision ruleis efficTent

and each agent 's transfer rule is UCG .
Claim) Any UCG mechanism is strategy - proof.
Proof. FTx a profile (V, … .Unl εVn . Consider agent : and apossible
misrepresentation ViEV . By reporting U: truth fully ,

「 obtains utiiity
V:(y

*(V∞….Un] ) +t:(V× …
.Vn ) =V :(

y*(V」 ….Un] ]) +; [y*(V….Vnllt h. (Ui)

=×v 다(y*(V( (V)스 +h:( V:) =V :( y * (Vi,γ1)tt :(V;,
_

v-iJg
y* is effcient



Def ) PTvot Rule : a UCG transter rule of the form t: (V", Un=:U;(y* )
s welfare of otheragents ^
_
- MaX EXU,(YlYEY 3 . at an eff. decisionw :

welfare of otheragents
at an effo decisionwt

E×) 옴 빛 많 밝
.

다" 1= 18- 2 =- 3, t .(i, 2)= 18-20=-2 .

Application] Single indvis?ble private good : Y= E(y"…,yn )ε[. 13/도= 13
and each V. is associated with a scalar θ :2① s

.
t
.
U:(yy, Yn)= θ: Y? .

bEfficTenty solves may꽃θ: Y: s.t. Y-ε [① . 1) . ×y: = 1 . So Y중 (θ)…θ n)>①

only if Q : =maxE; I :≤JEn3
.

× Pivot rule gives the second price auctron !
_

t
. /θ∞…

,
θ
n) ="?θ ,Y; *(θ)…θn ) -maxㆍ ,θ ,Y ; 1①≤Y ; 5 ) +☆F ;,도 13 .

So if
_

θ: >θ ;+☆ FT ,「 sutilTfyisθ :
Y

*( *
,
θn)+1θ ,y *maxㆍ적

= θ: - maxEθ; | θ; <θ :3
.

Otherwise
,
if θ:<θ3. forsome jo , then :

'
s

utilily is θ: Y
*(θ
)
+θj.- θ;0 =① . ,

Appication)Google'sadpricing: Modelwithk slots. Eachslot has a click-

through rate (CTR] ak>0. Ordering is α,>α2>…->α k .Thereare
bidders

,
n> k

.
Each has a valuation θ:> ① for having their ad

clicked on
.
Assume

,
for notations

,
that we have extra artificTal

slots with ① CTR
,
α*=α *2= … =αn = 0

.
AdecisTon y is an



assignment of slots to bidders . We try to maximize .Xktya where

Yc is the bidder who gets slot k . Observe that if ak> αk' and θ :>θ; ,

then α*θ; tαk. Q : < αkθ: + α*θJ . So , an efficientdecision will label

the bidders such that θ , 2 θ2?…> θ n , and slot k goes to bidder k .

Then
,
the UCG pivot payments will be (for bidder : ) :

도;*: vjEY*] maax23는v ☆y] 6 yE*로 <∅

t .(
θ"
…,θ n) =. α, θ,+.α, α5θ;+,α다옳

4 this is called a "generalized second - price auction
"

(GSA )

Obs) GSA (s not strategy- proof . Consider K=2 , n=3 , α . = 0 .2 , α2= 0. 199 ,
θ

1
= 10

,

θ
2
= 6

,
θ 3=2 . If 1 bids truthfully , they get 0.2( 10 - 6= 0.8

utility . Butif I reports some value 6> b ,>2 , they get θ. 199 ( 10 -2)

- 1
.
6

,
which is clearly the better option."

Combinatorial Auctions

The model . set of items G
,
n bidders

,
each bidder : has a valuation

function .26/ RandquasilinearpreferencesVi(A)+ t, if theyare
awarded AE G and transfer is t.

.

An assignmentis a collection

A
, As. .

An disjoint subsets . Nofe that some A: might be empty .



ex) railroad segments , radio spectrumauctions

Lef Y be the set of all assignments . Then ,
we may wrife the utiiTty

of agent : at outcome (y ,
t
… ,

tn) as K(y )tt: = V .(A:) + tr . The

wellfare maximizatTon is max :(A:)s .t. AE≤ G. A: AA;=⑪3.

Pef) singleMinded :bidderwithvaluation U ,where JBEG and

:> ① s
.
t
.
V: ( A ) = K . IEBEA 3

. .
ma×xv . (A:l
_

Claim) Suppose all bidders are sTegminded.Then,welfaremaxrmication

problem is NP- Hard .

Proof .Reductionfromk - Independent Set s Well
. Max

.

First
,
we consider the decision problem . GTvenU ., . . ,Un and KEIR ,

is

there an assignment (A. … .
An) s.t..+(A:]2 k?

Given a graph G (V .E ) , an independentset is a subsef IEV s.t
.

they have no edges between them .

s Ts there indoset of size 2k?

s Thisproblem is famously NP- complete .
Fix an instance GCV ,El , k of ind .set . Define an instance of Well . Max

with single minded bidders by . Let V be the set of bidders { l )… ,
n3

and G← E
.
For eachbidder

T
,let = I and B, be the set of



edges that are incident to it. Observe that if AC. … ,
AnJ is an

assignment . then옳.( A.) = # of agents who obtain A: aBT .

These agents form an independent set because if (: ,;]εEand
A:≥B: , then (I , ;)εB; while (G ;)4 A ;, soV .(A,)= 0 . Conversely ,

from each ind . set of size 2k , we may obtain an allo cafion

with×냐(A:)2k . Thus ,
F (A
, … .

An) s.t .옳.(A:l2 k :ff Fan ind .
set with cardinality 2 k . Reduction Ts complete,

Revenue

Motiuation . elling a single indivisible item . Buyers have valuations

θ 2①
,
their willingnesstopayfortheTtem .= f

.

"

fisids)

sAssume that θ uF where Fis some CDF on IRt .

For a fixed pricep , a buyer will accept the price iff θ IP .

sExpectedrevenue isp assume frOon supp(Fl]

* We assume Fis absolutely continuous with a density f whereF= f .
Then

,

the maximum revenue is found by the first order condition ,

염 [ p ( 1 -F(p] ]= 과Fcp ) - pf(p ) = ① ⇒
p
*=



Remarks. (1-F(p, )canbethoughtofDemand(p ) ,and 1-F(p)
- pfcp)

is a Marginal Revenue . Marginal Cost=① ,
so 큼(p(1-F(p]]=① works

.

Def) Regular : F s.t.쁨,

- Pis monotone decreasing .
ts If F is regular , then there is a unique optimal price pt.

General Setfing : Single indivisiblegood , nbuyers .QLEof *R
" )

with Y= [ (y×… , ynJE[@1) /
.

'y: ≤1 ? w.p아 y: of seller keeping thegood .
Assume each buyer : has valuation θ : ε[,:]드IR

+
s
.
t
.
their

utility from outcome (y .
t
,… ,
tn ) is θ: Y: + ti . Also assume that

each θ :isdrawn(independently)fromclf F, on[,:] with densty
f : where f.7 ①on [:, ] . ≈다.!

,

f
:
:

Prfrandomlydrawn
buyer has θ:≤θ;]

Ascf is a funcfion g(θ, , θn ) = (Y()… Yn(θ ) , ← . (]…, tn (⑤ )) .

The seller's revenue is 옳(- t. (② ])
,

but the sellerdoesn4 know θ: s .
.

s=ficoydo
' Expected revenue ?s )… 않않" 옮tt.( ②…② . ]Jda( ②n )… - dF. ( ② : )

.

□⑤ ⑤ -T

Similarly,expectedutiity ofagent: isf / y:(⑤ ,: tti(::]]f :(lf: (:)브 ] 부τ

dod. This is referred to as an ex-ante when allagents re-

port their valuations truthfully .



The term xpectedayoff( toagent: ] a fferknowingthattheir

ValuafTon is θ: is : ( l .(θ ,) =. [θ : Y(θ,:)+ t.(θ,ε:]] f.(θ:1d.
However

,
the IEP to : affer knowing that their valuation Ts θ: but reporting

their valuation as θ: Ts (U .(θ ,θ:) =. : [θ:Y(θ: , ②:)+t(i :]]f.(:1d .

Now,sinceexpeltatun. (=θ
:

(합.
,

대
! isθ"y(: :다 .

(:이
.

0

.
√iθ:) =

.

F .(θ: ]

Def) Incentive Compatible : A scf (y(θ ) ,t . () … ,
tn (ε ] ] that θ : ε[n3 , θθ: ε

[ ε :
,

:
], θθ :ε( , ⑤:] ,( l .(θ, θ:)≥( . (θ: ,θ : ) .

Obs) (Ui(θ:θ: )=θ:√(: )tt:(θ: )≥θ:V(: ) +t .(: ) = l : (θ,θ : ) .

U. (θ :
,θ: ) =⑤:v(θ :ltti(θ: ] 고θ:v() + ti(θ :] = l:(θ: ,θ :) must be true

θ:,θ :ε( ,
⑤
:]ifthescfis incentive compatTble . Adding the inegualities ,

θ(V :(θ : )←t +θ:락(θ:] +t.( > θ:VK(θ : )tt 예+θ:( θ: ) +t
→ θ( ((θ: )- K(θ :) ) +θ :(vθ-K (θ)] ≥0 ⇒-θ:) (Vi(θ)-i(θ:)20

.

Claim) It scf is incentive compatible , then t; ,K(. ) is monotone nondecre-
(weakly increasing)

asing
,

t
.
e
.

θ: ≤ θ :⇒VK(θ:]≤K(θ: )
.

( Proof by last line above)

LemmalIf scf is IC,
then (G(←θ) = l : ( θ:, θr)isconvexandalmostevery-

where differentiable
.

If Ttisdifferentiableat:ε (θ : ,⑤: ) . then its



deriratiue 「s .
(
주(θ:)= V락 (θ:)

.

Proof . ( sketch) If scf is IC , then U슨 (θ:) ≥ (U .(θ ,θ: ) θ ai ε [ ② : ,⑤:] .

So
,
(

U

.

←(θ: ] =m. [U:(θ, θ:] 3= m 않[ θ:락(θ:) +Ti(θ:) 3⇒ (l :
*
(θ:) is convex

.

It follows that UT(θ:) is almost everywhere differentlable . "

Suppose that θ: ε ( ,⑤ :]isa point of differentiabilify . Then, :(.
*
(θ: )=

( byFC)

s
.

나부(버.Now,(
U

속( θ:+h) - (.*
(
θ:) 2 ( U : (θ: +h ,

θ: ) - (U :(θ
,
θ: ]

=( + h)락(θ:) +)- ( θ:락( θ:)+ π(θ)]= h√(θ:) . If b70 .
then

(U*(②)- *그락(θ:), andifhs ①, ≤ v:(θ: ).Thus,vi (θ:) ≤
d.
*(쁨=θ . U.*( θ:)= . U* (

)-쁨 S: (θ :)
. By the

squeeze theorem ,
:(. *( θ)=Vi(θ+) . ,

Corollary :IfthescfisIC ,then(
.
*(θ: ) =U

.
*( θ : )

+
Sv: (sids

.

Obs) We have Q::(θ:] + ( (θ:) = (l: *(θ: ) =(
U

.*(θ : ]
+

S

:(s)ds
.

Then
,

π(θ) = (U
(

*(부 1 -θ(V:(θr] +
S
( (s)ds

.
So the transfers are pinned

down by (U
*(:

]andVi( .)
.

Lemmal A scf is IC iff : 1) vi( . ) is monotone weakly increasing , and
2) π(θ :) = (U.*(② )- θ부락( θ :)

+
S((s) ds θ 버

,
θθ:ε[② :

,
⑤ :]

.



Proof : Necessity follows from the previous lemmaI corollary . We

prove sufficiency here . Fix a scf and assume condifions IJand 2) .
F:× ;

,
θ
: ,: . Then (Ui( θ

,θ:
1 -U .:( ,θ :

) = θ : v:( θ:)+ F( θ:)- [θ(V:(θi ) +

π(θ: 1 ]=θ :[락 (빠(θ : 1]+[U.( ② :)-θ:v:( θ√
+

S

:(s) ds] -[U(
-부란 ( θ: ] + S:( sJds]=vi( θ:) (θi -θ: ] +=( s)ds≥:(θ:)( θ:-θ:)

L3 due to monoton?city
+ 학
(

θ

:Jds = v: (θ:)( θ :-θ:) + :(θ:)(θ :- θ: ) =④ .

⇒ .(θ:θ:2 U.( ,

Our problem :MascyS
…

. "
옳

(

-t : (② …⑤
. ]]'f. (:)d θ n…d θ;3s .t. f=

incenfive to

(y ( - ) ,t . (. )… ,
tn( -> ]isICandU

.

*(θ:>2 ① θθ:ε[② :,ε: ] θ : ε[I )partcpate_
…다옳(- t("…,θ]]f .(θ: ] dn …d θ

, =닭입다( - t(⑤↓…,nlJ'f:(θ i ]dn …d
=옳"

(

-

t(⑤ … ) )f.(θ :] f:( :) dθ:d⑤=부( T() f )d
.

SoourproblembecomesmaXE않(
-

&:]f:( :]d: ]3subjectfo:

1]V:( - )ismonotone(ncreasing ,2]F .(:] = (l
.
*(②리- θ:(θ : )

+
Sv(s )ds

,

3] (
U

.

*(θ: ) =
(

U

.*( 브 : )
+ S

: (s)ds 2 ①
.

→ Observe thaf Parficipation Constraints are equTvalent to (U
.

*(
②)≥ ① blo

Participation has to be satisfied for θ: = ②, andonce( U.
*
(②:)2① ,

then (h
*(θ:]

2 ① θ :2 since ELSJ2① US .

→ So our problem is : MaXE(
-

(* () +::()- S
:
( s)ds]f.( θi]d②:



subject to: 1) v: (. )isweaklymonofoneincreasing ,2 ](l.(2 ①θ
.

s Observe that an optimal scf will have (l.(②:) = 0 . Otherwise , we can

find E>① and set ti () -ε to be the transfer to : toget more revenue .
d이

→ Let 'scalculatefirst . Sf:(:
]

S

(sidsd~ Integration by parts :

F
.
(: 1 /
:
( s)ds/ 졌-

F

:1 :]v()dr. SinceF .( 브:)=①, F .( θ:=1 , thTs

becomes
S

:

(SIds-S
:

F

.(:]v()d θ: =S
:

( :1( 1- F.( θ1 ).뽑게 d .

Then
,
f
후

(

:v:(:)- S: ( s)ds ]f :(: ] d : = S
학

(

: ][:-「않,]f .l:)d.
→ Now

,
our problem is . ma×[. 는(:] [나-,] f .( ildθ : ? subjet

to: UfCoJisweakly monotone increasing .
→ Let φ:(θ:) =θ :-나다 .

which is : 's virtual valuation
.

→ Transform the objective using Fubin: :옳,현 (1 . :(②: 1 .f :(: l d:

= 옳"
…

S .
"

y

: ( !…②n!.원 (:1 .f, (⑤: ld⑤n - d .

=
"
… S
.

"

옳 .Y :(…]. ( :] . : fs (⑤; ] d…d ⑤.
s Consider a relaxed problem thaf drops the constraint that:( )bemono-

tone increasing . Then, we have :

MaXE"…
S

"

. y: ('…"] φ .(:). :f. ( ; ] d… d ,3 subject to :

Y: (θ". θnl ε [④ ,
1 ] and . y: (θ " …θ

n]≤ 1 θ ,
*
( θ,

…,
θn)

.



Solve the relaxed problempoitwise ( by⑤ ] :

max[. y: (θ비,θ n )φ :(θ :) 3subjetto. y() ε [0 . 13 , y: ≤ 1

for each fixed vector of valuations (θ"… ,θn) .
" The solution to the relaxed problem is : Y: (θ".θn] = I[ma* 부(θ:)303

.

→ Assumption: The distributions F, θr are regular if φ: (θ :=θ -「-()
areallstrictlymonotone increasing .
→ Now

,V ((θ: ) =
y

:( θ::]dFi( :) = Pr[:( θ:]>⑤Λ φ : (θ :)> 4s(②;) + JFT ]
,

which is monotone increasing in θ: when φ, Co ) is monotone increasing .

" Thus
,
under regularity , any solution to the relaxed problem is also a

solution to our orrginal problem .

→ Let Y( (θ:) =min[ θ :ε[:, :]| . (:)> Λ φ :(:) > φ, (θ ;) θ jF : 3
.

Then Yilθ: , θ -: ] = 1 5θ : >4 .( θ-:) .
∅

s Recallthatinterimtransfers π(θ:) =:(θ: )+S다 (sids
.

Let til θ, θ:)=-θ : Y :( θ ,θ- :)
+

f

"y :(S.ㆍ IEθ+3%( )
0, ds .

→ So the transfers are i (θ,θ:) = - θ: +- π (θ) ! = - Y. (θ:]ifθ :>YK(θil
,

and ① :f θ:≤ Y( (θ-:
)

.Wecanthinkofθ
:
,thevalueofθ :s.f .4:(θ=①

,

as a reservep.



Special Case : Symmetric bidders , F= F 2= … = Fn.Then,: ( θ:)= φ (θ1
= θ: -

1 - F다. ⇒

C :( θ:]> e ;( θ;)⇒φ ( θ:)> φ(θ;)⇒ θ:>θ] , and the

reserve price ecor ) =① is the same :

II good goes fo the highest bidder (highest waluation/

2) as longas Tf exceeds reserve price θ
r

.

3) winner pays Cargest of the second highest brd and reserve price .
When =1 : posted price is optimal !


